Environmental Evaluation of the Health of the Shediac Bay

Final Report

The Shediac Bay Watershed Association Inc.

March 1, 2019

Report produced for the New Brunswick Environmental Trust Fund

Contributors:

Jolyne Hébert

Rémi Donelle

Ryan Leblanc

TABLE OF CONTENTS

1	Introduct	ion	1
	1.1	Overview of the Shediac Bay Watershed	2
2	Water Qu	ality Sampling in Shediac Bay	3
3	Methodol	logy	4
	3.1	Water Quality Sampling	4
	3.2	Site Information - Small Tributaries of the Shediac Bay	4
	3.3	Water Quality Parameters	5
	3.4	CCME - Canadian Environmental Quality Guidelines (CEQGs)	9
	3.5	Health Canada - Guidelines for Canadian Recreational Water Quality	9
(Fr	3.6 eshwater)	CCME Recommendation Guidelines for the Protection of Aquatic 10	Life
	3.7	CCME Guidance framework for Phosphorus	10
4	Sampling	Results	12
	4.1	WQ-1	12
	4.2	WQ-2	14
	4.3	WQ-3	17
	4.4	WQ-4	19
	4.5	WQ-5	21
	4.6	WQ-6	24
	4.7	WQ-7	26
	4.8	WQ-8	29
	4.9	WQ-9	31
	4.10	WQ-10	34
	4.11	WQ-11	36
	4.12	Bacterial Sampling Summary	39
	4.13	Discussion	40
5	Eelgrass I	Monitoring in the Shediac Bay	41
	5.1	Scoudouc River – Heron Lane	42
	5.2	Shediac River	43
	5.3	Shediac Bay – Stead Street/South Cove	44
	5.4	Restoration 2018	45
6	WESP-A	C Salt Marsh Assessment	48
	6.1	Pointe-du-Chêne Marsh	50

	6.2	Grande-Digue Marsh	52				
7	Buffer Zo	ne Enhancement in Boudreau-Ouest	55				
8	Public Ed	ucation, Outreach and Involvement	57				
	8.1	Boater Awareness Program	57				
	8.2	Beach Sweep	58				
	8.3	TD Tree Day 2018	59				
	8.4	Educational Kiosks	61				
	8.5	Media Outreach	62				
9	Closing C	Comments	64				
Bib	liography		66				
Ap	pendix A -	- WATER CHEMISTRY METHODOLOGY	67				
Ap	pendix B:	Eelgrass Monitoring Transect Photos	68				
Ap	pendix C:	Eelgrass Monitoring Field Sheets	74				
	Annex 1 - Manual for Wetland Ecosystem Services Protocol for Atlantic Canada (WESP-AC): Tidal Wetlands						

TABLE OF TABLES

1 Introduction

The Shediac Bay Watershed Association (SBWA) was founded in 1999 as a result of growing concerns from local community residents over the ecological health of Shediac Bay. In order to establish a long-term water quality-monitoring program, a community-based association was formed. To address growing concerns on water quality in the Shediac Bay, a new program was initiated in 2016 to assess water contamination sources and the quality of coastal habitats.

The Association has been monitoring water quality in the Shediac River and Scoudouc River watersheds since 1999. The freshwater sampling program has been ongoing at the same monitoring stations that were established for the purpose of the development of the NB Water Classification Legislation. Since the beginning of the monitoring program the focus was on freshwater samplings. Only in recent years with the Shediac Bay evaluation program has funding been acquired to collect water quality data in the saltwater ecosystems of the watershed.

During 2015, the SBWA began monitoring E.coli in Shediac Bay with 7 sampling sites along the coastline of Pointe-du-Chêne, around the mouth of the Scoudouc River and the outer edges of the Shediac River estuary. The sampling continued in 2016 with the addition of 3 new sites. The water sampling was done for *E. coli*, and was done only once a month (from May to August) due to limited capacity. Although the quantity and frequency of these samplings are insufficient to collect the amount of data needed for a complete assessment, it did provide information on where to concentrate our next efforts.

In 2016, a study was done using Environmental DNA to assess the *source* of the *E. coli* bacteria that causes water contamination and beach closures. Since E.coli is present in the lower intestines of humans and warm-blooded animals, the source of fecal contamination can be traced back to the species of which it came from by analyzing the DNA of the bacteria. The results are available online in the archives of the SBWA. This information was used to help prioritize sites for restoration and actions to help reduce bacterial contamination.

Also in 2016, a partnership was formed with the *Southern Gulf of Saint Lawrence Coalition on Sustainability* to begin the assessment of the eelgrass habitats in the Shediac Bay. The first study site, and monitoring transect, was established in the Scoudouc River estuary, and the second was done in the Shediac River estuary in 2017. In 2018, a new monitoring transect was established near Pointe-du-Chêne, at the mouth of the South Cove estuary. These transect are monitored once per year using the SeagrassNet protocol, to measure changes in density of the eelgrass beds due to the threat of the invasive green crab. A final site will be installed in Grande-Digue in 2019 to measure different areas in the bay.

Turning the attention toward coastal habitats, a "Marsh Monitoring Program" from Bird Studies Canada began in 2015 to evaluate wetlands for their health and habitat quality for various bird populations. In 2016, staff received training to perform wetland evaluations under the WESP-AC (*Wetland Ecosystem Services Protocol for Atlantic Canada*) evaluation program. The WESP-AC was designed to provide an assessment of the health of both freshwater and saltwater marshes, as well as their ecosystem benefits, functions and services. Two salt marshes were chosen for monitoring in 2018.

As always, public education is always an integral part of all SBWA projects. The SBWA continued work with the Shediac Bay Yatch club to promote best practices for boaters. The Yatch club is in the process of applying for a blue flag certification in 2019. This certification will promote more partnerships with the marina and the SBWA for educational programs.

The SBWA also has a number of public education materials such as a series of interpretation panels installed on walking trails and other green spaces around Shediac. The Association also does a variety of presentations for schools and the public.

1.1 Overview of the Shediac Bay Watershed

The Shediac Bay Watershed covers 420 km² of land area and stretches along 36 km of coastline, from Cap Bimet to Cap de Cocagne (Fig. 1). The Shediac Bay Watershed is composed of two major river systems emptying into Shediac Bay: the Shediac River and the Scoudouc River. The Shediac and the Scoudouc Rivers are characterized by small tributaries covering watersheds of 201.8 Km2 and 143.3 km², respectively. The Shediac River is composed of two major water arms. The northern water arm is created by the convergence of the McQuade Brook, the Weisner and the Calhoun Brook. The southern water arm of the Shediac River is the continuation of the Batemans Brook.

Figure 1: Map of Shediac Bay watershed boundaries

Evaluation of the Health of the Shediac Bay, 2018 Final Report March 2019

2 Water Quality Sampling in Shediac Bay

The SBWA has expanded the water quality sampling program to evaluate the smaller tributaries of the Shediac Bay. These small brooks had never been assessed for water contaminants or evaluated for surrounding land uses and buffer zones. Due to the rise of concern for the health of the Shediac Bay, 11 new sites were added along the coastline from Boudreau-Ouest to Grande-Digue in 2017, to assess possible bacterial and contamination sources. All samples are analyzed by RPC Laboratory, and all sample results are sent to the *Department of Environment and Local Government*.

The purpose of the samples taken by the SBWA is to determine priority areas where the association can implement restoration programs such as tree planting along riparian zones. The data is not used to determine the safety of the recreational uses of the bay, such as swimming advisories.

There are many different guideline criteria for determining water quality. For example, Health Canada recommended microbiological guideline values for <u>recreational</u> water quality. The values are based on the presence of fecal indicator bacteria, namely, *Enterococci* for marine water, and *Escherichia coli* for freshwater.

In marine water, the guideline value is set at a geometric mean of 35 enterococci/100 mL when a minimum of 5 samples are collected (average bacterial concentrations of the 5 bottles must be below 35 MPN/100 mL), and the value of a single sample must be below 70 enterococci/100 mL.

In freshwater, the guideline value is set at a geometric mean of 200 *E. coli* /100 mL when a minimum of 5 samples are collected (average bacterial concentrations of the 5 bottles must be below 200 MPN/100 mL), and the value of a single sample must be below 400 *E. coli* /100 mL.

For this project, all samples collected are single samples and are analyzed for *E. coli*, since the small tributaries are freshwater (however, 2 sites are impacted by rising tides, but *E. coli* can still be used for brackish water). All bacterial data in this report is flagged when levels exceed 400 MPN/100 mL.

Guidelines							
Parameter	Considerations	Guideline					
Escherichia coli (Primary-Contact Recreation)*	Geometric mean concentration (minimum 5 samples) Single sample maximum concentration	≤ 200 <i>E. coli</i> /100 mL ≤ 400 <i>E. coli</i> /100 mL					
Enterococci (Primary-Contact Recreation)*	Geometric mean concentration (minimum 5 samples) Single sample maximum concentration	≤ 35 Enterococci /100 mL ≤ 70 Enterococci /100 mL					

Table 1: Guidelines for Health Canada Recreational Water Quality: summary table

3 Methodology

3.1 Water Quality Sampling

Water quality monitoring was conducted once a month from June to September 2018, at 11 new sampling sites in small tributaries along the coast of the Shediac Bay. Water quality sampling was performed using the protocol developed by the New Brunswick Department of Environment. Water samples were not collected after heavy rainfall events.

Basic water quality parameters (DO, temperature, pH, conductivity and salinity) were measured using a new YSI- *Professional Plus* multi-parameter metre. Water samples were sent to *RPC Laboratory* for analysis of *E.coli* and inorganic elements.

The equipment needed to conduct the sampling and collect the habitat data includes; laboratory issued sample bottles, labels, latex or nitrile gloves, clipboard, waterproof paper for field sheets, pencils, waders or rubber boots, GPS, digital camera, YSI (water conditioning metre), metre stick and survey measuring tape.

3.2 Site Information - Small Tributaries of the Shediac Bay

The following describes the sample site information for the 11 small stream water quality monitoring stations.

Site ID	Latitude	Longitude	Elevation (m) Google Earth	Brook Name	Location Description
WQ-1	N46°13'24.19"	W64°28'30.36"	10	Unnamed Brook	907 route NB-133, Boudreau-Ouest, Dirt Road after this address, going through the field (sample upstream of the culvert)
WQ-2	N46°13'35.25"	W64°29'48.39"	9	Unnamed Brook	725 route NB-133, Boudreau-Ouest (sample upstream from culvert)
WQ-3	N46°13'18.25"	W64°31'30.94"	13	Unnamed Brook	482 Main St., Shediac, In front of Shediac Bakery (sample upstream of culvert)
WQ-4	N46°13'11.25"	W64°32'56.17"	3	Unnamed Brook	Shediac Town Hall, 290 Main st, sample downstream culvert
WQ-5	N46°13'22.17"	W64°33'58.17"	8	Unnamed Brook	Park at Atkinson Court, walk on Route 133 (sample upstream from culvert)
WQ-6	N46°14'23.90"	W64°34'2.29"	8	Unnamed Brook	Park at Old Mill Rd (Sample upstream from culvert)
WQ-7	N46°14'43.38"	W64°34'7.29"	3	Unnamed Brook	Brook flows between Bay Vista Lodge at 3521 Route 134, Shediac Cape, (sample upstream from culvert)
WQ-8	N46°15'11.99"	W64°34'14.01"	1	Unnamed Brook	In front of Dr. Chiropractor, 3694 Route NB-134, Shediac Cape, (sample upstream of culvert)
WQ-9	N46°16'41.70"	W64°35'13.77"	1	Albert- Gallant Brook	2487 Shediac Rd., (sample downstream from culvert due to beaver flooding)
WQ-10	N46°17'8.24"	W64°34'29.13"	3	Unnamed Brook	Brook is after Antoine Rd, Grande-Digue, (sample from upstream of culvert)
WQ-11	N46°17'52.15"	W64°33'18.27"	1	Unnamed Brook	Brook is before on your left of Chemin des Sœurs, Grande-Digue, (sample from upstream of culvert)

Table 2: Water Quality Monitoring – Small Streams Site Information

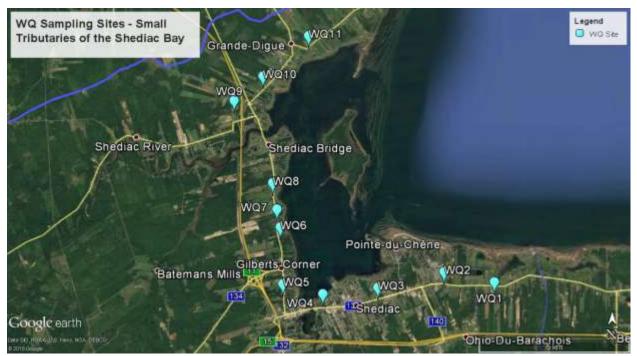


Figure 2: Water Quality Sampling Sites - Small Streams

3.3 Water Quality Parameters

3.3.1 Water Temperature

Water temperature can fluctuate depending on the period of the day and during seasonal changes. Values are influenced by numerous factors such as the tree canopy providing shade, water velocity and depths, presence of cold springs, etc. It is considered that water above 25 or 29 degrees Celsius (°C) tends to be of poor quality because less oxygen can be dissolved. Therefore, water temperature directly influences the dissolved oxygen levels. Water temperatures above 22 °C is said to cause thermal stress to salmonid populations, causing them to stop feeding and search for thermal refugia.

3.3.2 Potential Hydrogen (pH)

The potential hydrogen (pH) level indicates if the water is acidity or basic. It affects how much other substances, such as metals, dissolve in the water. In facts, the pH affects the solubility and toxicity of chemicals and heavy metals in water. Many aquatic organisms are sensitive to changes in pH and may be adversely affected by the pH that is either too high or too low. The pH varies naturally depending on bedrock, climate and vegetation cover, but may also be affected by industrial or other effluents, the exposure of some type of rock (for example during road construction) or drainage from mining operations. According to the CCME's Canadian water

quality guidelines, pH should be between 6.5 and 9, as pH levels move away from this range it can stress animal systems and reduce hatching and survival rates in the stream.

3.3.3 Dissolved Oxygen

Dissolved oxygen (DO) represents the concentration of oxygen in gaseous form in the dissolved in the water column. Most of the oxygen in the water comes from the surface atmosphere and is mixed in the water by turbulence and current. The measurement of the concentration of dissolved oxygen in surface waters is essential for measuring changes in water condition and evaluating water quality. It has a direct effect on aquatic life and can be influenced by stream habitat alteration. DO is essential for the survival of fish and many other forms of aquatic life. The temperature limits the amount of oxygen that can dissolve in water, dissolved oxygen varies with temperature and tends to be lower when the water temperature is high. However, temperature is not the only cause of low-oxygen, too many bacteria and an excess amount of biological oxygen demand from the oxygen consumption used by the microorganisms (aerobic bacteria) in the oxidation of organic matter also affects the dissolved oxygen concentrations. According to the Canadian Council of Ministers of the Environment (CCME) Canadian water quality guidelines, the lowest acceptable DO concentration for aquatic life in cold water is 9.5 mg/l for early life stages and 6.5 mg/l for other life stages.

3.3.4 Conductivity

Conductivity is the measurement of the ability of water to pass an electrical current. It is affected by the amount of inorganic dissolved solids (nitrate, chloride, sulfate, sodium, etc.) found in the water. The conductivity level may be influenced by rainwater, agricultural or urban runoff and the geology of the area. There are no set criteria for conductivity levels for water quality, but the US Environmental Protection Agency states that stream conductivity levels ranging between 0.15 and 0.5 mS/cm usually seem to support a good mixed fisheries. Consequently, a higher conductivity level may indicate a higher amount of dissolved material in the water and the presence of contaminants.

3.3.5 Nitrate-Nitrogen

Nitrogen is essential for plant growth, but the presence of excessive amounts in water presents a major pollution problem. Nitrogen compounds may enter water as nitrates or be converted to nitrates from agricultural fertilizers, sewage, industrial and packing house wastes, drainage from livestock feeding areas, farm manures and legumes. The acceptable amount of Nitrate-nitrogen for the protection of aquatic life in freshwater is set at 13 mg/l (NO3).

3.3.6 Phosphates

Phosphates exist in different forms: orthophosphate, metaphosphate and organically compound contains phosphorus. These forms of phosphate occur in living and decomposing plants and animals, as free ions, chemically bonded in aqueous system or mineralized compounds in sediments, soils and rocks. Large amount of phosphate coming from cleaning products

(detergents), run off from agricultural and residential fertilizer components can lead to eutrophication. Soil erosion is a major contributor of phosphorus to stream. It is recommended by Environment Canada to apply the Canadian Framework for phosphorus. Trigger ranges are based on the range of phosphorus concentrations in water that define the reference trophic status for a site. Measured phosphorus concentrations should not exceed predefined trigger ranges and should not increase more than 50% over baseline (reference) levels. Total phosphorus levels should be under 0.025 mg/L to maintain its unaffected trophic state.

3.3.7 Escherichia Coli

Escherichia coli (*E. coli*) is one of many species of bacteria living in the lower intestines of mammals. The presence of *E. coli* in water is a common indicator of fecal contamination. The acceptable count of E.coli in water is set at 400 MPN/100 ml.

3.3.8 Aluminum

A high concentration of aluminum, due to non-point sources such as rain and snowmelt leaching from watershed soils, can pose a risk to fish in freshwater habitats. For example, ionoregulatory and osmoregulatory complications can develop in fish where aluminum concentrations exceed the CCME recommended guideline of 5 μ g•L⁻¹ when the pH is less than 6.5, and 100 μ g•L⁻¹ when the pH is greater than or equal to 6.5. Furthermore, respiratory problems can occur due to the precipitation of aluminum on the gills, as the positively charged aluminum ion (Al³⁺) binds with the negatively charged epithelium of the gill.

Many of Atlantic Canada's freshwater habitats naturally contain aluminum concentrations that often exceed CCME guidelines for the protection of aquatic wildlife; however, various fish species are abundant in New Brunswick's rivers. This increased amount of aluminum and other metals is often accompanied by runoff organic carbon due to Atlantic Canada's relatively flat topography and impermeability (Dennis & Clair, 2012). The organic carbon possesses a negatively charged carboxylic functional group, which attracts and binds with the positively charged dissolved aluminum ion. This neutralizes the aluminum ion, rendering it inert and therefore unable to bind with the negatively charged epithelium of the fish gill. Despite this, aluminum ion levels in Atlantic Canada can still reach levels dangerous to fish (Dennis & Clair, 2012).

3.3.9 Iron

Iron enters freshwater habitats in a similar manner to aluminum. Rain and snowmelt leach iron from rocks and watershed soils, and the runoff enters rivers and streams. Anthropogenic sources, such as wastewater and storm water discharges, are also non-point sources of iron in freshwater habitats. A high concentration of iron may cause physiological and/or morphological changes in aquatic plant species (Xing & Liu, 2011).

3.3.10 Copper

Because copper is an essential metal, aquatic organisms have developed methods of copper regulation in the body. Despite this, however, copper toxicity is still possible at high concentrations.

3.3.11 Chloride

Chloride ions (Cl-) in a freshwater habitat are the result of dissolved salts from various sources, and can negatively impact aquatic wildlife sensitive to increased chloride concentration. Although a naturally contributing source of chloride is estuarine backflow from the ocean during rising tide, road salt runoff can also increase chloride concentrations. Since freshwater organisms are generally hyperosmotic, they depend on a low concentration of chloride for proper osmoregulation. A higher concentration of chloride may decrease the ability for freshwater organisms to osmoregulate, affecting endocrine balance, oxygen consumption following long-term exposure, and overall changes in physiological processes. Increased chloride levels may also increase the rigidity in spotted salamander eggs, lowering permeability and in turn, oxygen consumption (Canadian Council of Ministers of the Environment, 2011).

3.3.12 Boron

Boron (B) is ubiquitous in the environment, occurring naturally in the earth's crust and various minerals. Although boron is relatively non-toxic, it may cause sensitivities in some species of fish. Long-term exposure to boron has shown to cause sensitivities in amphibians and water fleas (Canadian Council of Ministers of the Environment, 2009).

3.3.13 Ammonia

Ammonia (NH₃) has many different point and non-point sources, including not only natural causes, but also anthropogenic (e.g. municipal, agricultural, and industrial) causes. Natural sources of ammonia include the decomposition of dead organic matter and waste, gas exchange with the atmosphere, forest fires, animal waste, human breath, discharge of ammonia by biota, and nitrogen fixation processes. Sewage treatment plants and waste burning are examples of municipal sources, whereas intensive farming, ammonia-rich fertilizer spills, and the decomposition of wastes from livestock are examples of agricultural sources. Finally, industrial sources include, but are not limited to, iron and steel mills, fertilizer plants, oil refineries, meat-processing plants, mining, and the fabrication of explosives.

High concentrations of unionized ammonia can result in adverse health effects in freshwater biota. Since unionized ammonia is neutral, it can diffuse across biological membranes more readily than ammonium ion (NH_4^+) . A study done by Thurston and Russo (1984) showed that long-term exposure of rainbow trout to ammonia causes pathological lesion formation on the gills and tissue degradation in the kidneys (Canadian Council of Ministers of the Environment, 2010).

3.4 CCME - Canadian Environmental Quality Guidelines (CEQGs)

CCMERECOMM	COME RECOMMENDED GUIDELINES FOR THE PROTECTION OF AQUATIC LIFE (FRESHWATER) SUMMARY								
Parameter	Condition	Value (µg/L)	Condition	Value (µg/L)	Equation Between Conditions		No	otes	
Ag	_	—	Long-Term	0.25	_	The follo	wing para	meters did	not have
AI	pH<6.5	5	pH≥6.5	100	—	COMEre	commende	d guideline	es for the
As	_	—	Upper	5	—	protectio	n of aquat	ic life and	were
В	Short-Term	29,000	Long-Term	1,500	_	therefore	e omitted fi	rom the tab	le:
Cd (Short-Term)	HARD<5.3	0.11	HA RD>360	7.7	10^(1.016*LOG(HARD)-1.71)	ALK_T	Ba	Be	HCO3
Cd (Long-Term)	HARD<17	0.04	HA RD>280	0.37	10^(0.83*LOG(HARD)-2.46)	Bi	Br	Ca	003
a	Short-Term		Long-Term		_	Co	COND	Cr	F
CLRA	Narrative; re	efer to COME v	vebsite for n	nore information.	—	HARD	К	Lang_Ind	(20°C)
Qu	HARD<82	2	HARD>180	4	0.2*EXP(0.8545*LN(HARD)-1.465)	Li	Mg	Mn	Na
DO (w arm) †	Early	6000	Other	5500	—	NOX	Rb	pH (Sat)	Sb
DO (cold)	Early	9500	Other	6500	_	Sn	SO4	Sr	TDS
E-coli ‡	_	—	Upper	400 MPN/100mL	—	Те	TKN	TOC	TP-L
Fe	_	_	Upper	300		TURB	V		
Мо	_	_	Upper	73	_				
NH3_T	Table; refer	to COME web	site for more	information.	—	† The gu	uideline for	dissolved	oxygen is
NH3_Un	-	—	Long-Term	19	—			armw ate	,
Ni	HARD≤60	25	HARD>180	150	EXP(0.76*LN(HARD)+1.06)		-	w arm w a	
NO2	_	_	Upper	197	_		-	cold wate	
NO3	Short-Term	550 000	Long-Term	13 000	—			and cold v	v ater
Pb	HARD≤60	1	HARD>180	7	EXP(1.273*LN(HARD)-4.705)	biota,	other life s	tages.	
pH	Lower L-T	6.5	Upper L-T	9.0	—	‡ There	is no limit f	or the prot	tection of
Se	_	—	Upper	1	—			The limit of	
П	_	_	Upper	0.8	_			he protecti	
U	Short-Term	33	Long-Term	15	—			nd human h	nealth is
Zn	-	—	Upper	30	—	used i	nstead.		

Table 3: Summary of the CCME Canadian Environmental Quality Guidelines

3.5 Health Canada - Guidelines for Canadian Recreational Water Quality

Table 4: Guidelines for Health Canada Recreational Water Quality: Summary Table

Guidelines for Health Canada Recreational Water Quality							
Parameter	Considerations	Guideline					
Escherichia coli	Geometric mean concentration (minimum 5 samples)	≤ 200 <i>E. coli /</i> 100 mL					
(Primary-Contact Recreation)*	Single sample maximum concentration	≤ 400 <i>E. coli /</i> 100 mL					
Enterococci	Geometric mean concentration (minimum 5 samples)	≤ 35 Enterococci /100 mL					
(Primary-Contact Recreation)*	Single sample maximum concentration	≤ 70 Enterococci /100 mL					
*Advice regarding waters intended for secondary-contact recreational activities is provided in Section 4.2. of the Guidelines for Canadian Recreational Water Quality: Third Edition							
	/canada/health-canada/migration/healthy-canadians/ eau/alt/pdf/water-recreational-recreative-eau-eng.pdf						

Evaluation of the Health of the Shediac Bay, 2018 Final Report March 2019

3.6 CCME Recommendation Guidelines for the Protection of Aquatic Life (Freshwater)

 Table 5: CCME Recommendation Guidelines for the Protection of Aquatic Life (Freshwater)

CCME RECOMM	MENDED GUIDELINES FOR	THE PROT	ECTION OF AQ	UATIO	CLIFE (FRESHWATER) SUMMARY OF OTHER PARAMETERS		
Parameter	Description	Value	Units		Notes		
	Early life stages, cold water biota†	9.5	mg/L		The guidelines for the lowest acceptable dissolved oxygen		
Dissolved O ₂₊	Other life stages, cold water biota	6.5	mg/L		concentrations are divided into four different categories to accommodate the wide range of tolerances exhibited by		
D13301/ed 0 ₂₁	Early life stages, warm water biota	6	mg/L		freshwater species at various life stages, and with warn or colder temperature preferences.		
	Other life stages, warm water biota	5.5	mg/L				
рH	Lower long-term limit	6.5	—		There is no limit for the protection of aquatic wildlife for E.		
pri	Upper long-term limit	9	—	‡	coli. The limit of 400 MPN/100 mL for the protection of		
E. coli ‡	Upper limit	400	MPN/100 mL		environmental and human health is used instead.		

3.7 CCME Guidance framework for Phosphorus

Table 6: CCME Guidance framework for Phosphorus	Table 6: CC	ME Guidance	e framework	for	Phosphorus
--	-------------	-------------	-------------	-----	------------

CCME Guida				
Parameter	Description	Value	Units	Notes
TP-L*	Hyper-eutrophic	> 100	µg/L	The CCME recommended guidelines for the protection of aquatic wildlife
	Eutrophic	35 – 100	µg/L	(freshwater) indicate the concentrations of total phosphorus at which each
	Meso-eutrophic	20 – 35	µg/L	condition may occur. This does not suggest that a stream with hyper-
	Mesotrophic	10 – 20	10-20 µg/L eutrophic levels of total phosphorus will necessarily exhibit h	
	Oligotrophic	4 – 10	µg/L	properties, for example.
	Ultra-oligotrophic	< 4	µg/L	* Total phosphorus level

3.7.1 Terms and Definitions

All data collected during the sampling season has been organized in 3 distinct tables: water chemistry data and *E. coli* results, nutrient results, and inorganic results. The following provides the terms and definitions of the acronyms used in the data tables.

Table 7: Terms and definitions for water chemistry and bacterial data tables

TERMS AND DEFINITIONS FOR FIELD DATA COLLECTED BY YSI AND LABORATORY SAMPLES						
Parameter Unit Definition		Definition				
Temp °C Air and water temperature measured in degrees Celsius		Air and water temperature measured in degrees Celsius				
SAL	ppt	Salinity measured in parts per thousand				
Dissolved O ₂	mg/L, %	Dissolved oxygen measured in milligrams per litre and percentage				
E. coli	MPN/100mL	Escherichia coli concentration measured in most probable number per 100 millilitres				
ALK_T mg/L Total alkalinity measured in milligrams per litre		Total alkalinity measured in milligrams per litre				
CLRA TCU Water colour measured in true colour units		Water colour measured in true colour units				
COND	µS/cm	Conductivity measured in microsiemens per centimetre in the field and laboratory				
HARD	mg/L	Hardness measured in milligrams per litre				
Lang_Ind (20°C)	—	Langlier index at 20 degrees Celsius				
pH — Potential of hydrogen measured in the field and laboratory, and the saturation p		Potential of hydrogen measured in the field and laboratory, and the saturation pH at 20 degrees Celsius				
Sat (20°C) — The pH at which water at 20 degrees Celsius is saturated with calcium carbonate		The pH at w hich w ater at 20 degrees Celsius is saturated w ith calcium carbonate				
TDS	mg/L	Total dissolved solids measured in milligrams per litre				
TURB	NTU	Water turbidity measured in nephelometric turbidity units				

TERMS AND DEFINITIONS FOR FIELD DATA COLLECTED BY YSI AND LABORATORY SAMPLES

Table 8: Terms and definitions for nutrients data tables

TERMS AN	RMS AND DEFINITIONS FOR NUTRIENT DATA							
Parameter	Unit	Definition	Parameter	Unit	Definition			
HCO ₃	mg/L	Bicarbonate measured in milligrams per litre	NH ₃ _Un	µg/L	Ammonia unionized at 20°C measured in micrograms per litre			
Br	µg/L	Bromine measured in micrograms per litre	NO ₂	µg/L	Nitrite measured in micrograms per litre			
Ca	mg/L	Calcium measured in milligrams per litre	NO ₃	µg/L	Nitrate measured in micrograms per litre			
CO ₃	µg/L	Carbonate measured in micrograms per litre	NOX	µg/L	Nitrite + Nitrate measured in micrograms per litre			
CI	mg/L	Chloride measured in milligrams per litre	SO ₄	mg/L	Sulphate measured in milligrams per litre			
F	µg/L	Fluoride measured in micrograms per litre	TKN	mg/L	Total Kjedhal nitrogen measured in milligrams per litre			
К	mg/L	Potassium measured in milligrams per litre	TN	mg/L	Total nitrogen calculated in milligrams per litre			
Mg	mg/L	Magnesium measured in milligrams per litre	TOC	mg/L	Total organic carbon measured in milligrams per litre			
Na	mg/L	Sodium measured in milligrams per litre	TP-L	µg/L	Total phosphorus measured in micrograms per litre			
NH ₃ T	µg/L	Total ammonia measured in micrograms per litre		—	—			

Table 9: Terms and definitions for inorganic data tables

TERMS AND DEFINITIONS FOR HEAVY METAL DATA

TEL MIC AN		INTIONS FOR HEAVEN INTELAL DATA			
Parameter	Unit	Definition	Parameter	Unit	Definition
AI	µg/L	Aluminum measured in micrograms per litre	Min	µg/L	Manganese measured in micrograms per litre
As	µg/L	Arsenic measured in micrograms per litre	Mo	µg/L	Molybdenum measured in micrograms per litre
В	µg/L	Boron measured in micrograms per litre	Ni	µg/L	Nickel measured in micrograms per litre
Ba	µg/L	Baryium measured in micrograms per litre	Pb	µg/L	Lead measured in micrograms per litre
Cd	µg/L	Cadmium measured in micrograms per litre	Rb	µg/L	Rubidium measured in micrograms per litre
Co	µg/L	Cobalt measured in micrograms per litre	Sb	µg/L	Antimony measured in micrograms per litre
Cr	µg/L	Chromium measured in micrograms per litre	Sr	µg/L	Strontium measured in micrograms per litre
Cu	µg/L	Copper measured in micrograms per litre	U	µg/L	Uranium measured in micrograms per litre
Fe	µg/L	Iron measured in micrograms per litre	V	µg/L	Vanadium measured in micrograms per litre
Li	µg/L	Lithium measured in micrograms per litre	Zn	µg/L	Zinc measured in micrograms per litre

4 Sampling Results

The following section will describe the water quality data collected at the 11 small streams sampling sites for the 2018 field season. The surrounding land uses, as visible from aerial imagery from several years of images on Google Earth, are also described for each site. The information is meant to complement the data and provide information on potential causes for contamination.

4.1 WQ-1

This water quality sampling site is located in a residential area in Boudreau-West, and is accessed by a private dirt road (with landowner permission) connected to NB-Route 133. The samples are taken upstream from the culvert of the dirt road. The surrounding land uses includes: agricultural fields, several gravel pits, and the Highway 15. The buffer zones dividing the stream and the farm fields (\pm 10 hectares, 2 hectares, 1.3 hectares) ranges between 15 and 50 metres in density. There is a good buffer zone that separates the brook and the gravel pits (> 50 m on each side) that should prevent sediment from running off into the water.

The tributary joins the Shediac Bay approximately 1 km downstream of the sampling site. The small stream ends with a small estuary surrounded by a salt marsh. Next to this salt marsh is the Greater Shediac Sewage Commission's aeration lagoons, as well as a lift station with an outfall discharge pipe at the edge of the estuary. The treated wastewater from the lagoons is discharged further out into the bay, but there is a possibility that contaminants may come into this estuary during incoming tides or storm surges. The water quality station is located higher than the highest tidal zone.

The water sampling results for the site WQ-1, for 2018, meet the recommendations for the survival of freshwater aquatic life based on dissolved oxygen. However, the pH in July was above the recommended long term limit using the field probe, but the laboratory test showed readings in the normal range.

Total phosphorus levels for long-term eutrophic conditions according to the "CCME Guidance Framework for Phosphorus" were in the mesotrophic range $(10 - 20 \,\mu g/L)$ from May to July, in the meso-eutrophic (20-35 $\,\mu g/L)$ in August, and in the oligotrophic range (4-10 $\,\mu g/L)$) in September.

Concentrations of aluminum exceeded the CCME water quality guideline (100 μ g/L when the pH is \geq 6.5) in the sample taken in August (148 μ g/L). Iron also exceeded the guidelines in August (480 μ g/L), when the recommendation is 300 μ g/L.

Bacterial levels did exceed the maximum concentration of *E. coli* from Health Canada recreational guidelines (\geq 400 MPN/100 mL), for the sample taken in August (456.4 MNP/100 mL).

SITE WQ-1	I: FIEL	DDAT		CTED BY	YSI AND LAI	B SAMP	LES										
	Tem	o (°C)			_			00	ND				pH ((pH)	TDS (m	g/L)	
Date (yy- mm-dd)	Air	Water	SAL (ppt)	DO (mg/L)	E. coli (MPN /100mL)	ALK_T (mg/L)	CLRA (TCU)	Field (mS/cm)	Lab (µS/cm)	HARD (mg/L)	Lang_Ind (20°C)		Lab	Sat (20°C)	Field	Lab	TURB (NTU)
18-05-23	12.0	8.8	0.11	12.05	23.3	31	75	0.163	237	51.4	-1.46	7.59	7.2	8.7	154.05	121	1
18-06-21	17.0	11.9	0.13	11.3	86.2	36	99	0.209	282	61.2	-0.72	8.76	7.8	8.5	181.35	134	0.8
18-07-26	22.0	15.6	0.19	9.66	77.8	47	7	0.325	389	87.4	-0.67	9.24	7.6	8.3	255.45	190	0.6
18-08-21	19.0	13.5	0.12	9.35	456.4	30	210	0.199	250	58	-1.42	8.96	7.2	8.6	165.75	123	1.9
18-09-18	-	14.5	0.21	9.65	10.2	49	9	DND	435	102	-0.5	8.90	7.7	8.2	287.30	205	0.5

Table 10: Water chemistry data and *E. coli* results for WQ-1, 2018

Table 11: Nutrient results for WQ-1, 2018

SITE WQ-	1: NUT	RIENT D	DATA																
	HCO3 (mg/L)	Br (µg/L)	Ca (mg/L)	(uall)	Cl (mg/L)	F (µg/L)	K (mg/L)		Na	NH3T (µg/L)	NH3_Un (µg/L)	NO2 (µg/L)	NO3 (µg/L)	NOX (µg/L)	SO4 (mg/L)	TKN (mg/L)	TN (mg/L)	TOC (mg/L)	TP-L (µg/L)
18-05-23	30.9	40	16	46	55.2	160	0.81	2.78	24.2	<50	<1	<50	600	600	<1	0.2	0.8	6.7	18
18-06-21	35.8	40	19.3	212	57.7	200	0.78	3.16	28.6	<50	<1	<50	480	480	<1	0.3	0.8	8.2	18
18-07-26	46.8	50	27.3	175	82.2	70	1.04	4.68	35.7	<50	<1	<50	730	730	7	0.1	0.8	1.3	16
18-08-21	29.9	50	18.3	45	55	420	0.74	2.98	25.4	<25	<1	<25	400	400	<5	0.6	1.0	23	27
18-09-18	48.7	50	31.9	229	85.4	130	1.23	5.32	40.7	<50	<1	<50	790	790	7	<0.1	0.8	1.2	8

 Table 12: Inorganics results for WQ-1, 2018

SITE WQ-	1: HEAV	YMET	ALS A	ND OTH	HER EL	EM ENT	S													
	Al (µg/L)						-		Fe (µg/L)	Li (µg/L)	Mn (µg/L)						Sr (µg/L)	U (µg/L)	V (µg/L)	Zn (µg/L)
18-05-23	76	<1	8	53	<0.01	<0.1	<1	<1	240	0.7	35	<0.1	<1	0.1	0.7	<0.1	46	<0.1	<1	1
18-06-21	71	<1	8	64	<0.01	<0.1	<1	<1	290	0.8	32	<0.1	<1	0.1	0.8	<0.1	59	<0.1	<1	2
18-07-26	18	<1	10	88	<0.01	<0.1	<1	<1	90	1.0	47	<0.1	<1	<0.1	1	<0.1	75	<0.1	<1	<1
18-08-21	148	<1	8	71	<0.01	<0.1	<1	<1	480	0.9	39	<0.1	<1	0.2	0.8	<0.1	63	0.1	1	4
18-09-18	20	<1	11	99	<0.01	<0.1	<1	<1	90	1.0	38	<0.1	<1	<0.1	1.1	<0.1	87	<0.1	<1	1

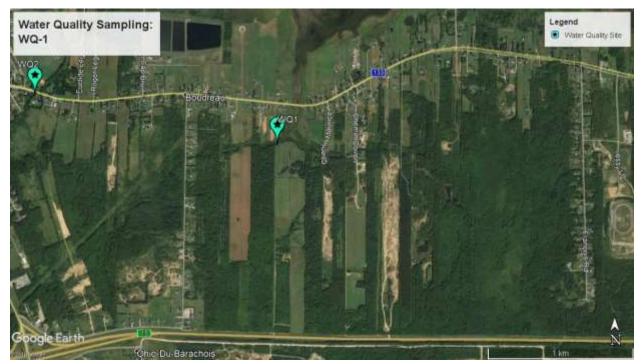


Figure 3: WQ-1 site location and surrounding land uses

Evaluation of the Health of the Shediac Bay, 2018 Final Report March 2019

Figure 4: Site photos for the water quality monitoring station WQ-1

4.2 WQ-2

This water quality sampling site is also located in a residential area in Boudreau-West, near the convenience store "Handy Andy's" on Route NB-133. The samples are taken upstream of the wooden culvert. The surrounding land uses is mainly residential, roads, and has a drive-in movie theatre upstream (300 m). Below the culvert of Route NB-133, directly following the sampling site, is the beginning of a provincially regulated freshwater wetland. The freshwater wetland is approximately 170 metres in length before transitioning to a coastal salt marsh at the highest tidal point. Within the salt marsh area is the *Ocean Surf RV Campground*. There are no trees between the campground and the wetland and brook areas, making any buffer zone only made up of wild grasses and shrubs. In the southern part of the campground, the 30-metre buffer zone is respected by the maintenance crew, by not mowing grass past a certain line. However, another part of the campground is built within the buffer zone of the estuary, with camping lots placed along the edges of a rock armoured bank. A partnership was formed with *Ocean Surf* to begin planting trees in the buffer zone, as part of a multi-year goal of enhancing the riparian zone. In 2017, 182 native trees were planted.

The water sampling results for the site WQ-2, for 2018, meets or exceeds all the recommendations for the survival of freshwater aquatic life based on pH and dissolved oxygen. Total phosphorus levels for long-term eutrophic conditions according to the "CCME Guidance framework for Phosphorus" were in the meso-eutrophic range $(20 - 35 \ \mu g/L)$ in May, and in the mesotrophic range $(10 - 20 \ \mu g/L)$ from June to September. Concentrations of aluminum exceeded the CCME water quality guideline $(100 \ \mu g/L)$ when the pH is ≥ 6.5 in the sample/s taken in August (382 $\mu g/L$). Concentrations of iron also exceeded the guidelines in August (2690 $\mu g/L$), when the recommendation is 300 $\mu g/L$. Bacterial levels did exceed the maximum concentration of *E. coli* from Health Canada recreational guideline ($\geq 400 \ MPN/100 \ mL$), for the sample taken in July; 1960.8 MPN/100 mL.

Table 13: Water chemistry data and E. coli results for WQ-2, 2018

SITE WQ-2	: FIEL	DDAT	A COLLE	CTED BY	YSI AND LAI	BSAMP	LES										
Date (yy-	Temp	o (°C)	SAL	DO	E. coli (MPN	ΔΙΚ Τ	CLRA	CO	ND	HARD	Lang Ind		pН	(pH)	TDS (m	ng/L)	TURB
mm-dd)	Air	Water	(ppt)	(mg/L)	/100mL)	(mg/L)	(TCU)	Field	Lab	(mg/L)	(0000)	Field	Lab	Sat (20°C)	Field	Lab	(NTU)
								(mS/cm)	(µS/cm)								
18-05-23	12.0	9.5	0.16	11.9	59.8	42	12	0.229	324	65.7	-1.04	7.21	7.4	8.4	211.90	161	0.9
18-06-21	17.0	12.4	0.19	10.7	93.1	51	15	0.296	390	80.5	-0.47	8.18	7.8	8.3	253.50	190	1.2
18-07-26	22.0	17.2	0.20	8.16	1960.8	64	<5	0.356	413	105	-0.57	8.34	7.5	8.1	274.30	210	0.8
18-08-21	19.0	14.1	0.22	8.88	258.2	59	10	0.362	453	94.5	-0.65	8.11	7.5	8.2	297.05	223	1.4
18-09-18	21.0	16.0	0.23	8.67	60.2	96	<5	0.387	459	117	0.04	8.15	7.9	7.9	304.20	230	0.7

Table 14: Nutrient results for WQ-2, 2018

SITE WQ-	2: NUT	RIENT D	ATA					-	-				-						
	HCO3 (mg/L)		Ca (mg/L)	(uall)	Cl (mg/L)	F (µg/L)		3	ina	-	NH3_Un (µg/L)	NO2 (µg/L)	NO3 (µg/L)	NOX (µg/L)	SO4 (mg/L)	TKN (mg/L)			TP-L (µg/L)
18-05-23	41.9	40	20.4	99	42	100	1.00	3.58	35.0	<50	<1	<50	300	300	5	0.2	0.5	2.9	21
18-06-21	50.7	50	25.2	301	80.7	140	1.06	4.27	40.5	<50	<1	<50	260	260	6	0.2	0.5	2.6	14
18-07-26	63.8	50	32.8	190	82	110	1.29	5.67	34.8	<50	<1	<50	500	500	6	0.1	0.6	1.3	15
18-08-21	58.8	50	29.4	175	91.4	160	1.27	5.12	48.1	<50	<1	<50	490	490	9	0.2	0.7	2	16
18-09-18	95.2	100	36.6	711	74.4	230	1.39	6.19	43.3	<50	<1	<50	190	190	8	<0.1	<0.2	1	14

Table 15: Inorganics results for WQ-2, 2018

SITE WQ-2	2: HEAV	Y MET	ALS AN	ID OTH	ER ELE	MENT	S		-									-		
Date (yy- mm-dd)		-					Cr (µg/L)	Cu (µg/L)	-	Li (µg/L)	Mn (ua/L)	-		-	-		Sr (µg/L)	U (µg/L)	V (µg/L)	Zn (µg/L)
18-05-23	49	<1	8	79	< 0.01	<0.1	<1	<1	150	0.9	94	<0.1	<1	<0.1	0.8	<0.1	99	0.1	<1	5
18-06-21	44	<1	9	96	<0.01	<0.1	<1	<1	140	1.2	67	<0.1	<1	<0.1	0.9	<0.1	76	0.2	<1	1
18-07-26	382	<1	11	240	0.08	1.2	<1	1	2690	1.8	3100	<0.1	<1	1.2	1.4	<0.1	103	0.5	1	10
18-08-21	26	<1	12	118	<0.01	<0.1	<1	<1	150	1.4	107	<0.1	<1	<0.1	1.1	<0.1	95	0.3	1	2
18-09-18	22	<1	17	166	<0.01	<0.1	<1	<1	190	4.4	199	0.4	<1	<0.1	1.1	<0.1	204	0.3	<1	2

Figure 5: WQ-2 site location and surrounding land uses

Figure 6: Site photos for the water quality monitoring station WQ-2

Evaluation of the Health of the Shediac Bay, 2018 Final Report March 2019

4.3 WQ-3

This water quality sampling site is located in a residential and commercial area in the Town of Shediac, directly off Main St., next to the *Shediac Bakery*. The samples are taken upstream of the culvert. The surrounding land uses upstream is mainly a large residential sector, up to the approximate headwaters below Highway 15. It is important to note that for most of the riparian zones along this brook, there are inadequate buffer zones (< 15 m). This unnamed brook reaches the tidal zone approximately 400 metres downstream of the sampling site.

The water sampling results for the site WQ-3, for 2018, meets or exceeds all the recommendations for the survival of freshwater aquatic life based on pH and dissolved oxygen. Total phosphorus levels for long-term eutrophic conditions according to the "CCME Guidance framework for Phosphorus" were in the meso-eutrophic range (20 -35 μ g/L) for all samples except for June that was in the mesotrophic range (10 – 20 μ g/L). Concentrations of aluminum exceeded the CCME water quality guideline (100 μ g/L when the pH is \geq 6.5) in the sample taken in May (144 μ g/L). Bacterial levels did exceed the maximum concentration of *E. coli* from Health Canada recreational guideline (\geq 400 MPN/100 mL), for the sample taken in July; 4839.2 MPN/100 mL.

Table 16: Water chemistry data and E. coli results for WQ-3, 2018

OTTOMO	3: FIELD DAT		OTED DV	VOLANDIA	DOAMD	
SILE WQ-	3: FIELD DA I	A COLLE		15I AND LAI	BSAINP	LES
					_	

SHE WG-3). FIEL	DUAT			1 SI AND LAI	5 SAIVIP	LES										
Date (yy-	Tem	o (°C)	SAL	DO	E. coli (MPN	ΑΙΚ Τ	CI RA	CO	ND	HARD	Lang_Ind		pН	(pH)	TDS (m	ng/L)	TURB
mm-dd)	Air	Water	(ppt)	(mg/L)	/100mL)	(mg/L)		Field (mS/cm)	Lab (µS/cm)	(mg/L)		Field	Lab	Sat (20°C)	Field	Lab	(NTU)
18-05-23	12.0	9.6	0.11	12.4	125.9	55	24	0.166	238	61.6	-0.71	7.48	7.6	8.3	152.75	130	8.7
18-06-21	17.0	13.3	0.16	11.1	135.4	84	21	0.265	344	90.4	-0.07	8.09	7.9	8.0	222.30	178	1.4
18-07-26	22.0	20.0	0.15	7.21	4839.2	87	10	0.287	310	101	-0.02	8.30	7.9	7.9	206.05	159	0.4
18-08-21	19.0	15.2	0.20	8.58	240.2	100	14	0.340	413	110	0.06	8.08	7.9	7.8	271.70	220	1.5
18-09-18	22.0	16.1	0.24	8.7	176.8	130	<5	0.403	477	123	0.5	8.02	8.2	7.7	316.25	256	0.6

Table 17: Nutrient results for WQ-3, 2018

SITE WQ-	3: NUT	RIENT D	ATA	•	-		-	-	-		-			•					
Date (yy- mm-dd)	HCO3 (mg/L)	Br (µg/L)	Ca (mg/L)	CO3 (µg/L)	Cl (mg/L)	F (µg/L)	K (mg/L)		ina	NH3T (µg/L)	NH3_Un (µg/L)	NO2 (µg/L)	NO3 (µg/L)	NOX (µg/L)	SO4 (mg/L)		TN (mg/L)	TOC (mg/L)	TP-L (µg/L)
18-05-23	54.8	30	20.3	205	55	130	1.12	2.64	22.2	<50	<1	<50	420	420	9	0.2	0.6	4.7	33
18-06-21	83.3	50	30.5	622	47.2	150	1.37	3.47	31.4	<50	<1	<50	600	600	10	0.2	0.8	3.5	18
18-07-26	86.3	50	33.2	644	38.2	140	1.50	4.48	19.3	<50	<1	<50	570	570	7	0.2	0.8	2.2	29
18-08-21	99.2	80	35.9	741	59.6	220	1.49	4.97	39.5	<50	<1	<50	790	790	14	0.2	1.0	2.8	29
18-09-18	128.0	140	39.7	1910	68.7	290	1.46	5.76	49.1	<50	<1	<50	100	100	11	0.2	0.3	0.9	28

Table 18: Inorganics results for WQ-3, 2018

SITE WQ-3	3: HEAV	Y MET	ALS AN	ND OTH	ER ELE	MENT	S								-					
Date (yy- mm-dd)		As (µg/L)					-		Fe (µg/L)	Li (µg/L)	Mn (ua/l)				-		-	U (µg/L)		Zn (µg/L)
18-05-23	144	<1	8	59	<0.01	<0.1	<1	2	170	0.8	17	<0.1	<1	0.3	0.9	<0.1	205	0.4	1	5
18-06-21	66	<1	12	80	<0.01	<0.1	<1	1	90	0.9	13	0.2	<1	<0.1	1.1	<0.1	82	0.6	<1	4
18-07-26	22	<1	12	91	<0.01	<0.1	<1	<1	40	0.7	19	0.2	<1	<0.1	1.41	<0.1	77	0.7	2	2
18-08-21	57	<1	17	100	<0.01	<0.1	<1	<1	70	2.1	13	0.4	<1	<0.1	1.2	<0.1	137	1.1	2	2
18-09-18	35	<1	26	160	<0.01	<0.1	<1	<1	60	5.7	12	0.9	<1	<0.1	1	<0.1	279	1.1	1	3

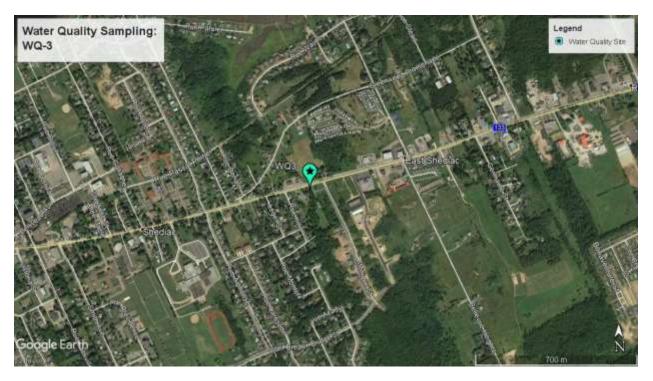


Figure 7: WQ-3 site location and surrounding land uses

Figure 8: Site photos for the water quality monitoring station WQ-3

4.4 WQ-4

This water quality sampling site is located behind the Town of Shediac's city hall. There is a culvert where this brook exits the underground canal along the edge of the parking lots for Town Hall and *Auberge Gabrièle's Inn & Restaurant*, and the sample is taken directly below this culvert. The surrounding land uses for small unnamed brook is mainly residences, business parking lots and roads. A part of this brook is channelled in an underground pipe somewhere along Chelsey Street, before reaching Main Street. There is also a dog park upstream (600 metres) next to a drainage ditch that connects to this brook. The SBWA built its first rain garden below this dog park, in an effort to capture stormwater runoff from the park and from the surrounding area (parking lot of the *Vestiaire St-Joseph* and Centennial Park). The brook flows into the Shediac Bay approximately 200 metres downstream from the sampling site, and is unaffected by normal tides.

The water sampling results for the site WQ-4, for 2018, meets or exceeds all the recommendations for the survival of freshwater aquatic life based on pH and dissolved oxygen. Total phosphorus levels for long-term eutrophic conditions according to the "CCME Guidance Framework for Phosphorus" were in the mesotrophic range $(10 - 20 \,\mu\text{g/L})$ in June, in the meso-eutrophic (20 - 35 $\mu\text{g/L})$ in May and August, and in the eutrophic range (35 - 100 $\mu\text{g/L})$ in July and September.

Levels of copper exceeded the CCME water quality guidelines for freshwater (2 µg/L when hardness \geq 82, and 4 µg/L when hardness is \leq 180 mg/L, see Table 2). However, this site may be impacted by extreme tides and there are no guidelines for marine water. The other possibility for elevated copper levels can be explained by the underground pipes from which this brook is channelled through under the Town of Shediac. Levels for chloride also surpass the short term CCME water quality guidelines for freshwater (120 mg/L) in May, July and September. Bacterial levels did exceed the maximum concentration of *E. coli* from Health Canada recreational guideline (\geq 400 MPN/100 mL), for the sample taken in May; 1986.3 MPN/100 mL.

SITE WQ-4	: FIEL	D DAT	A COLLE	CTED BY	YSI AND LAI	B SAMP	PLES										
Date (yy-	Tem	o (°C)	SAL	DO	E. coli (MPN	ΔΙΚ Τ	CLRA	CO	ND	HARD	Lang Ind		pН	(pH)	TDS (m	ng/L)	TURB
mm-dd)	Air	Water	(ppt)	(mg/L)	/100mL)	(mg/L)	(TCU)	Field (mS/cm)	Lab (µS/cm)	(mg/L)	(20°C)	Field	Lab	Sat (20°C)	Field	Lab	(NTU)
18-05-23	12.0	10.2	0.32	11.27	1986.3	100	8	4.730	669	148	-0.45	7.33	7.3	7.8	429.65	354	5.5
18-06-21	17.0	12.5	0.30	11.12	104.6	120	6	0.470	633	165	0.37	7.64	8	7.6	401.05	317	0.8
18-07-26	22.0	15.0	0.41	8.54	90.4	130	<5	0.670	820	192	0.05	8.00	7.6	7.6	526.50	435	0.5
18-08-21	19.0	15.6	0.32	8.36	159.6	110	<5	0.530	654	164	0.03	7.84	7.7	7.7	422.50	343	0.8
18-09-18	22.0	16.7	0.41	9.15	357.8	140	<5	DND	812	223	0.44	7.73	7.9	7.5	533.00	436	1.4

Table 19: Water ch	hemistry data :	and <i>E. coli</i>	results for	WQ-4, 2018
--------------------	-----------------	--------------------	-------------	------------

SITE WQ-	4: NUT	RIENT D	ATA								-			-					
	HCO3 (mg/L)	Br (µg/L)	Ca (mg/L)	CO3 (µg/L)	Cl (mg/L)	F (µg/L)	K (mg/L)	3	INd	NH3T (µg/L)	NH3_Un (µg/L)	NO2 (µg/L)	NO3 (µg/L)	NOX (µg/L)	SO4 (mg/L)			TOC (mg/L)	TP-L (µg/L)
18-05-23	99.8	60	47.2	187	142	120	2.14	7.34	70.6	<50	<1	<50	1730	1730	16	0.2	1.9	2.7	28
18-06-21	119	80	52.4	1120	102	160	2.23	8.21	56.1	<50	<1	<50	1510	1510	16	0.2	1.7	1.3	18
18-07-26	129	80	60.3	485	173	150	2.45	9.99	84.6	<50	<1	<50	1680	1680	18	0.1	1.8	1.0	49
18-08-21	109	90	52.1	516	119	180	2.76	8.22	63.0	<50	<1	<50	2700	2700	19	<0.1	2.7	1.2	23
18-09-18	139	80	69.8	1040	169	170	2.72	11.80	71.9	<50	<1	<50	1780	1780	17	0.2	2.0	1	51

Table 20: Nutrient results for WQ-4, 2018

 Table 21: Inorganics results for WQ-4, 2018

SITE WQ-4	1: HEAV	Y MET	ALS AN	ID OTH	ER ELE	MENT	S			-	•	-	-						-	
Date (yy- mm-dd)		As (µg/L)					-		-	Li (µg/L)	Mn (ua/L)	-			-		-	U (µg/L)		Zn (µg/L)
18-05-23	87	<1	17	173	0.01	<0.1	<1	12	210	2	53	0.3	<1	0.3	1.5	<0.1	162	0.7	<1	6
18-06-21	28	<1	18	234	<0.01	<0.1	<1	4	80	4.4	33	0.3	<1	0.1	1.7	<0.1	249	0.8	<1	4
18-07-26	21	<1	23	315	<0.01	<0.1	<1	2	60	4.6	26	0.3	<1	<0.1	1.8	<0.1	303	0.9	2	3
18-08-21	25	<1	25	222	< 0.01	<0.1	<1	7	80	3.7	30	0.4	<1	<0.1	2.1	<0.1	222	0.8	2	3
18-09-18	91	<1	28	327	0.02	0.1	<1	4	200	4.4	98	0.3	<1	0.6	2	<0.1	364	1.1	<1	6

Figure 9: WQ-4 site location and surrounding land uses

Figure 10: Site photos for the water quality monitoring station WQ-4

4.5 WQ-5

This water quality sampling site is also located off Route 133, past *Guy's Frenchys* heading towards Gilbert's Corner. The stream crosses the road 75 m past Atkinson Court. The samples are taken upstream from the culvert. The sample site is located approximately 90 m from the tidal zone and the beginning of a salt marsh. The surrounding land uses is mainly residential, forested land, and farm fields. The riparian area around the residential properties have little buffer (< 15 m), but this constitutes small sections of the brook. However, there are good buffer zones between the farmlands and the head ponds of this brook; 25 m - 50 m in tree density. There is a thinner buffer zone where the pond discharges into the brook, approximately 20 m between the bank and a field. Another brook joins these ponds upstream, supplying water from the other side of Highway 11, up to Route 134 (Lakeville Road). In this area, there is more cultivated land where the brook passes, but there is no buffer zone visible from aerial imagery. There is no indication that animals, such as cows, are being pastured in that field, but the lack of a buffer around this brook passing around and through these fields may be impacted by sediment and could explain the higher levels of total phosphorus.

The water sampling results for the site WQ-5, for 2018, meets or exceeds all the recommendations for the survival of freshwater aquatic life based on pH and dissolved oxygen. Total phosphorus levels for long-term eutrophic conditions according to the "CCME Guidance Framework for Phosphorus" were in the meso-eutrophic range (20 - 35 μ g/L) in June and September, and in the eutrophic range (4 - 10 μ g/L) in May, July and August.

Results did exceed the recommended CCME water quality guidelines for chloride in freshwater, from June to September, exceeding the long-term limit (120 mg/L) but the short-term limit was not exceeded (640 mg/L). Concentrations of aluminum exceeded the CCME water quality guideline (100 µg/L when the pH is \geq 6.5) in the sample taken in May (126 µg/L). Concentrations of iron also exceeded the guidelines in May, June, and July (420 µg/L, 360 µg/L and 370 µg/L respectively), when the recommendation is 300 µg/L. Bacterial levels did not exceed the maximum concentration of *E. coli* from Health Canada recreational guideline (\geq 400 MPN/100 mL).

Table 22: Water chemistry data and E. coli results for WQ-5, 2018

SITE WQ-5	5: FIEL	D DAT	A COLLE	CTED BY	YSI AND LA	BSAMP	LES										
Date (yy-	Temp	o (°C)	SAL	DO	E. coli (MPN	ΔΙΚ Τ	CLRA	CO	ND	HARD	Lang_Ind		pН	(pH)	TDS (m	ng/L)	TURB
mm-dd)	Air	Water	(ppt)	(mg/L)	/100mL)	(mg/L)	(TCU)	Field (mS/cm)	Lab (µS/cm)	(mg/L)		Field	Lab	Sat (20°C)	Field	Lab	(NTU)
18-05-23	12.0	14.7	0.16	10.8	101.4	56	26	0.265	335	68.6	-0.65	7.75	7.6	8.2	214.50	171	7.3
18-06-21	17.0	17.4	0.35	9.48	20.3	72	24	0.610	727	98.8	-0.34	7.79	7.7	8.0	468.00	350	1.6
18-07-26	22.0	18.9	0.31	7.87	52.8	83	9	0.570	649	105	-0.24	8.03	7.7	7.9	442.00	326	1.9
18-08-21	19.0	16.1	0.36	8.2	181.6	58	26	0.620	740	99.6	-0.43	7.85	7.7	8.1	481.00	375	2.4
18-09-18	21.0	16.0	0.35	7.9	24.4	76	<5	0.590	704	110	-0.16	7.72	7.8	8	468.00	346	0.7

Table 23: Nutrient results for WQ-5, 2018

SITE WQ-	5: NUTF	RIENT D	ATA				-	-				-							
	HCO3 (mg/L)		Ca (mg/L)	CO3 (µg/L)	Cl (mg/L)	F (µg/L)	K (mg/L)	3	Na	-	NH3_Un (µg/L)	NO2 (µg/L)		NOX (µg/L)	SO4 (mg/L)		TN (mg/L)	TOC (mg/L)	TP-L (µg/L)
18-05-23	55.8	30	23.8	209	71.4	120	1.47	2.23	37.4	<50	<1	<50	<50	<50	<1	0.3	0.3	6.9	48
18-06-21	71.6	60	33.6	337	169	140	1.23	3.61	96.9	<50	1	<50	<50	<50	<1	0.3	0.3	5.4	28
18-07-26	82.6	50	36.3	389	153	110	1.34	3.44	79.5	<50	<1	<50	100	100	<1	0.2	0.3	2.8	44
18-08-21	57.7	50	33.8	272	186	200	1.75	3.68	99.4	60	<1	<50	130	130	13	0.4	0.5	5.6	38
18-09-18	75.5	50	38.1	448	158	110	1.64	3.73	95.7	<50	<1	<50	100	100	2	0.2	0.3	2	31

Table 24: Inorganics results for WQ-5, 2018

SITE WQ-5	5: HEAV	Y MET	ALS AN	ND OTH	ER ELE	MENT	S				-									
				Ba (µg/L)			-		Fe (µg/L)	Li (µg/L)	Mn (µg/L)						-	U (µg/L)		Zn (µg/L)
18-05-23	126	<1	5	120	<0.01	0.2	<1	<1	420	0.6	279	0.1	<1	0.3	1	<0.1	54	0.2	<1	2
18-06-21	29	<1	8	167	<0.01	0.2	<1	<1	360	0.5	877	0.2	<1	<0.1	1.1	<0.1	88	0.1	<1	2
18-07-26	54	<1	11	167	<0.01	0.2	<1	<1	370	0.4	1030	<0.1	<1	0.2	1.5	<0.1	81	0.1	<1	1
18-08-21	41	<1	12	157	<0.01	0.1	<1	<1	300	0.5	494	0.1	<1	<0.1	1.5	<0.1	86	<0.1	1	2
18-09-18	6	<1	12	135	<0.01	<0.1	<1	<1	90	0.4	143	<0.1	<1	<0.1	1.4	<0.1	80	<0.1	<1	<1

Figure 11: WQ-5 site location and surrounding land uses

Figure 12: Site photos for the water quality monitoring station WQ-5

Evaluation of the Health of the Shediac Bay, 2018 Final Report March 2019

4.6 WQ-6

This water quality sampling site is located off Route 134, past the Shediac Cape School, right next to Old Mill Road. The vehicle is parked on Old Mill Road, and the samples are taken downstream of the culvert crossing Route 134, to capture the water coming from both directions; coming from along Old Mill Road and along Route 134. The sample site is located approximately 175 m from the tidal zone. The surrounding land uses includes; residential, active farm fields for cultivation and pasture (cows seen on aerial imagery), and a gravel pit. There is very little or no buffer along the brook as it flows through the fields. It is unknown if cows are held in this area on a regular basis, but there are obvious cow tracks that criss-crosses the brook in one particular area and animals visible in aerial views from several years. There is also no buffer between the gravel pit area and the brook. Passed the gravel pit heading upstream is a more forested lot, with healthier riparian zones. The next parcel of land and leading up to the end of the brook near Highway 11 are more cow pastures, as animals, cow tracks and cattle fencing can be seen on aerial imagery. There is more vegetation in the buffer zones in this field, with tree density ranging from 5 - 30 metres.

The water sampling results for the site WQ-6, for 2018, meet the recommendations for the survival of freshwater aquatic life based on pH. However, levels of dissolved oxygen dropped below the recommendation (6.5 mg/L) for general cold water organisms in the months of July and September (5.95 mg/L and 1.80 mg/L respectively). Total phosphorus levels for long-term eutrophic conditions according to the "CCME Guidance framework for Phosphorus" were in the mesotrophic range (10 - 20 μ g/L) in each sample. Results exceed the recommended CCME water quality guidelines for chloride in freshwater in the month of June (121 mg/L), exceeding the long-term limit (120 mg/L) but the short-term limit was not exceeded (640 mg/L).

Concentrations of iron exceeded the guidelines in July (340 μ g/L), when the recommendation is 300 μ g/L. Bacterial levels did not exceed the maximum concentration of *E. coli* from Health Canada recreational guideline (\geq 400 MPN/100 mL).

SITE WQ-6	6: FIEL	D DAT	COLLE	CTED BY	YSI AND LAI	BSAMP	LES										
Date (yy-	Tem	o (°C)	SAL	DO	E. coli (MPN	ΑΙΚ Τ	CLRA	CO	ND	HARD	Lang Ind		pН	(pH)	TDS (m	ng/L)	TURB
mm-dd)	Air	Water	(ppt)	(mg/L)	/100mL)	(mg/L)		Field (mS/cm)	Lab (µS/cm)	(mg/L)	(20°C)	Field	Lab	Sat (20°C)	Field	Lab	(NTU)
18-05-23	13.0	11.6	0.21	10.4	285.1	67	12	0.325	446	110	-0.62	7.44	7.4	8.0	283.40	217	0.9
18-06-21	18.0	14.5	0.28	9	37.9	91	14	0.466	593	130	-0.14	7.85	7.7	7.8	377.70	298	0.7
18-07-26	22.0	14.9	0.16	5.95	66.4	94	5	0.271	380	108	-0.57	7.89	7.3	7.9	210.06	173	0.7
18-08-21	22.0	14.2	0.26	6.55	94.6	71	20	0.432	531	114	-0.4	7.81	7.6	8.0	349.05	262	0.5
18-09-18	23.0	15.5	0.40	1.8	17.0	87	<5	0.700	358	109	-0.31	7.39	7.6	7.9	507.00	175	0.6

Table 25: Water chemistry data and E. coli results for WQ-6, 2018

SITE WQ-	6: NUT	RIENT D	ATA																
Date (yy- mm-dd)	HCO3 (mg/L)	Br (µg/L)	Ud	CO3 (µg/L)	U .	F (µg/L)		3	INd	NH3T (µg/L)	NH3_Un (µg/L)	NO2 (µg/L)	NO3 (µg/L)	NOX (µg/L)	SO4 (mg/L)	TKN (mg/L)	TN (mg/L)	TOC (mg/L)	TP-L (µg/L)
18-05-23	66.8	40	35.1	158	83.5	120	1.36	5.42	41.9	<50	<1	<50	960	960	4	0.3	1.3	3.8	20
18-06-21	90.5	50	41.5	426	121	140	1.29	6.31	62.5	<50	<1	<50	870	870	6	0.3	1.2	4.1	14
18-07-26	93.8	40	34.2	176	38.9	100	1.49	5.45	23.2	<50	<1	<50	1490	1490	5	0.2	1.7	1.5	19
18-08-21	70.7	40	36	265	99.1	180	1.73	5.79	56.4	<50	<1	<50	810	810	16	0.3	1.1	3.8	19
18-09-18	86.7	30	34.3	324	43.3	110	2.09	5.78	25.0	<50	<1	<50	1380	1380	5	0.2	1.6	1.3	13

Table 26: Nutrient results for WQ-6, 2018

Table 27: Inorganics results for WQ-6, 2018

SITE WQ-6	6: HEAV	Y MET	ALS AN	ND OTH	IER ELE	MENT	S	•	•	-		-	•	•	-		•	•	-	
Date (yy- mm-dd)		-	B (µg/L)				-		Fe (µg/L)	Li (µg/L)	Mn (ua/L)						Sr (µg/L)	Ŭ	V (µg/L)	Zn (µg/L)
18-05-23	27	<1	8	79	< 0.01	<0.1	<1	<1	180	0.5	97	<0.1	<1	<0.1	1.0	<0.1	71	0.2	<1	6
18-06-21	16	<1	9	90	< 0.01	<0.1	<1	<1	180	0.5	108	<0.1	<1	<0.1	1	<0.1	86	0.3	<1	3
18-07-26	63	<1	11	100	< 0.01	0.1	<1	<1	340	0.6	359	<0.1	<1	0.3	0.9	<0.1	59	0.2	2	2
18-08-21	13	<1	12	94	<0.01	<0.1	<1	<1	180	0.5	182	<0.1	<1	<0.1	1.2	<0.1	73	0.1	1	2
18-09-18	5	<1	14	90	<0.01	<0.1	<1	<1	110	0.7	212	<0.1	<1	<0.1	0.9	<0.1	55	<0.1	<1	1

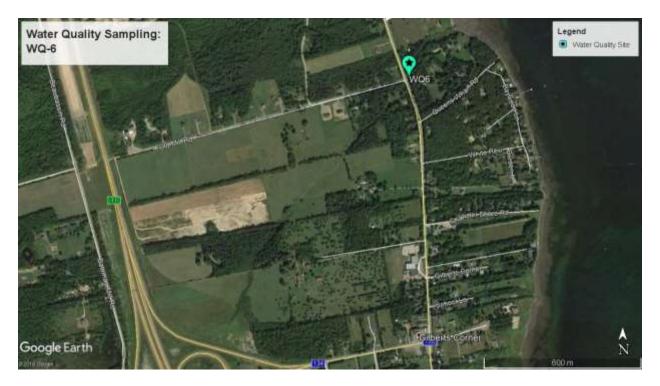


Figure 13: WQ-6 site location and surrounding land uses

Figure 14: Site photos for the water quality monitoring station WQ-6

4.7 WQ-7

This water quality sampling site is located off Route 134, on the property of *Bay Vista Lodge*. The samples are taken upstream of the culvert crossing the main road. The sample site is located approximately 160 m from the tidal zone and the beginning of a salt marsh. The surrounding land uses is mainly residential the cottages of *Bay Vista*. This brook is very short; the only obvious source of water being a pond $(1,700 \text{ m}^2)$ approximately 200 m away. The brook does not appear on GeoNB, only a separate brook nearby which flows into the same coastal wetland. This other nearby brook leads up to a gravel pit approximately 550 metres upstream from Route 134, but it is surrounded by forested lots.

The water sampling results for the site WQ-7, for 2018, meet the recommendations for the survival of freshwater aquatic life based on pH. However, levels of dissolved oxygen dropped below the recommendation (6.5 mg/L) for general cold water organisms in July and September (4.16 mg/L and 4.97 mg/L respectively). Total phosphorus levels for long-term eutrophic conditions according to the "CCME Guidance Framework for Phosphorus" were in the meso-eutrophic range (20 -35 μ g/L) in June, August and September, in the eutrophic range (35 – 100 μ g/L) in May, and in the hyper-eutrophic range (>100 μ g/L) in July.

Concentrations of aluminum exceeded the CCME water quality guideline (100 µg/L when the pH is \geq 6.5) in the samples taken in May (147 µg/L) and July (198 µg/L). Concentrations of iron also exceeded the guidelines in all samples except September; May (640 µg/L), June (510 µg/L), July (2010 µg/L) and August (390 µg/L), when the recommendation is 300 µg/L. Bacterial levels did not exceed the maximum concentration of *E. coli* from Health Canada recreational guideline (\geq 400 MPN/100 mL).

SITE WQ-7	7: FIEL	DDAT	A COLLE	CTED BY	YSI AND LAI	BSAMP	LES										
Date (yy-	Temp	o (°C)	SAL	DO	E. coli (MPN	ΔΙΚΤ	CLRA	CO	ND	HARD	Lang Ind		pН	(pH)	TDS (m	ıg/L)	TURB
mm-dd)	Air	Water	(ppt)	(mg/L)	/100mL)	(mg/L)	(TCU)	Field (mS/cm)	Lab (µS/cm)	(mg/L)	(20°C)		Lab	Sat (20°C)	Field	Lab	(NTU)
18-05-23	12.0	14.1	0.13	9.66	8.6	42	37	0.221	281	70.1	-1.02	7.43	7.4	8.4	180.70	134	1.9
18-06-21	18.0	18.6	0.14	9.22	14.6	52	30	0.250	287	75.4	-0.60	7.56	7.7	7.7	185.25	139	1.8
18-07-26	22.0	23.7	0.15	4.16	19.2	67	28	0.322	320	88.5	-0.83	7.82	7.3	8.1	209.30	163	11.7
18-08-21	22.0	17.9	0.13	6.83	40.2	40	24	0.233	265	70.8	-0.94	7.79	7.5	8.4	174.850	133	1.8
18-09-18	23.0	19.6	0.13	4.97	229.0	54	8	0.249	272	79.2	-0.77	7.53	7.5	8.3	180.05	138	0.8

Table 28: Water chemistry data and E. coli results for WQ-7, 2018

Table 29: Nutrient results for WQ-7, 2018

SITE WO-	7: NUTRIENT	ΔΤΔ
OTLING		

SITE WQ.																			
Date (yy- mm-dd)	HCO3 (mg/L)	Br (µg/L)	Ud			F (µg/L)	K (mg/L)		INd		_			-		TKN (mg/L)	TN (mg/L)	TOC (mg/L)	TP-L (µg/L)
18-05-23	41.9	0.04	20.7	0.099	55.9	0.13	0.99	4.48	24.9	<50	<1	<50	<50	<50	<1	0.5	0.5	4.4	75
18-06-21	51.7	0.04	22.5	0.244	50.8	0.13	1.06	4.67	23.4	<50	<1	<50	<50	<50	4	0.3	0.3	4.3	21
18-07-26	66.9	0.05	26.1	0.125	59.5	0.10	1.45	5.66	23.4	50	<1	<50	<50	<50	3	0.8	0.8	3.9	153
18-08-21	39.9	0.04	21	0.119	51.4	0.14	0.99	4.47	21.0	<50	<1	<50	<50	<50	9	0.2	0.2	3.6	25
18-09-18	53.8	0.04	22.9	0.160	49.5	0.12	1.20	5.35	19.1	<50	<1	<50	<50	<80	6	0.2	0.2	1.9	32

Table 30: Inorganics results for WQ-7, 2018

SITE WQ-7	SITE WQ-7: HEAVY METALS AND OTHER ELEMENTS																			
		As (µg/L)					-		Fe (µg/L)	Li (µg/L)	Mn (ua/L)				-		-	U (µg/L)	V (µg/L)	Zn (µg/L)
18-05-23	147	<1	5	65	0.01	0.3	<1	<1	640	1.2	239	<0.1	<1	0.4	0.8	<0.1	55	0.1	6	3
18-06-21	74	<1	5	69	<0.01	0.1	<1	<1	510	1.4	128	<0.1	<1	0.2	1	<0.1	60	0.1	<1	5
18-07-26	198	2.0	7	114	0.02	0.8	<1	2	2010	1.7	1370	<0.1	<1	1	1.4	<0.1	78	0.2	60	6
18-08-21	70	<1	6	71	<0.01	<0.1	<1	<1	390	1.4	79	<0.1	<1	0.1	0.9	<0.1	56	<0.1	8	4
18-09-18	21	<1	7	99	<0.01	<0.1	<1	1	260	1.3	278	<0.1	<1	<0.1	1	<0.1	66	<0.1	30	2

Figure 15: WQ-7 site location and surrounding land uses

Figure 16: Site photos for the water quality monitoring station WQ-7

Evaluation of the Health of the Shediac Bay, 2018 Final Report March 2019

4.8 WQ-8

This water quality sampling site is located off Route 134, in front of a chiropractor's office (3694 Route NB-134, Shediac Cape). The site is within the tidal zone, being approximately 75 metres from the outlet into the Shediac Bay. The samples are taken upstream from the culvert. The surrounding land uses includes; residences, farmlands and a chicken farm. The farm fields possess little to no buffer around the lots; mainly wide open fields with little tree line density. There is a settling pond behind the chicken farm buildings, with a thin band of vegetation surrounding it (> 10 m). Observations taken during the sampling includes dark colouration and bad odours in the water.

The water sampling results for the site WQ-8, for 2018, meet the recommendations for the survival of freshwater aquatic life based on pH. However, levels of dissolved oxygen dropped below the recommendation (6.5 mg/L) for general cold water organisms in July and August (0.06 mg/L and 6.13 mg/L respectively). Total phosphorus levels for long-term eutrophic conditions according to the "CCME Guidance Framework for Phosphorus" were in the meso-eutrophic range (20 -35 μ g/L) in May, in the eutrophic range (35 – 100 μ g/L) in June, and in the hyper-eutrophic range (>100 μ g/L) in July, August and September.

It is important to note that this site is impacted by tides, and that marine water disqualifies several flagged parameters that only apply for freshwater: chloride, aluminum, boron, iron and zinc. There are no marine limits set for these elements. There is a correlation between some of these elements and the salinity content listed in Table 31. However, there is a CCME water quality guideline for arsenic in marine water of $12.5 \mu g/L$, and this level was surpassed in August ($20.0 \mu g/L$).

Bacterial levels exceed the maximum concentration of *E. coli* from Health Canada recreational guideline (\geq 400 MPN/100 mL) in June (816.4 MPN/100 mL), July (865 MPN/100 mL) and September, where levels exceeded the maximum detection limit of > 2419.6 MPN/100 mL.

SITE WQ-8	SITE WQ-8: FIELD DATA COLLECTED BY YSI AND LAB SAMPLES																
Date (yy-	Temp (°C)		SAL	DO	E. coli (MPN	ΔΙΚ Τ	CLRA	CO	ND	HARD	Lang Ind		pН	(pH)	TDS (mg/L)		TURB
mm-dd)	Air	Water	(ppt)	(mg/L)	/100mL)	(mg/L)	(TCU)	Field (mS/cm)	Lab (µS/cm)	(mg/L)	(20°C)	Field	Lab	Sat (20°C)	Field	Lab	(NTU)
18-05-23	12.0	13.6	23.48	7.35	24.3	76	22	28.900	11200	764	-0.57	7.35	7.4	8	23948.00	4590	0.9
18-06-21	18.0	21.1	0.99	8.99	816.4	86	26	1.900	630	102	-0.2	7.54	7.9	7.9	1215.05	320	1.1
18-07-26	22.0	22.5	39.33	0.06	865.0	120	18	38.800	41800	3140	0.51	7.95	7.7	7.2	26468.00	19600	6.4
18-08-21	22.0	17.3	2.33	6.13	51.2	100	21	3.760	3180	162	-0.56	7.46	7.5	8.1	2320.590	1340	27.5
18-09-18	23.0	16.6	0.10	7.15	>4839.2	117	8	0.106	42300	2770	0.33	6.66	7.6	7.3	78.65	19200	5.1

Table 31: Water chemistry data and *E. coli* results for WQ-8, 2018

Table 32: Nutrient results for	WQ-8, 2018
--------------------------------	------------

SITE WQ-	8: NUT	RIENT D	ATA																
	HCO3 (mg/L)		Ca (mg/L)	CO3 (µg/L)	Cl (mg/L)		K (mg/L)	3	INd	NH3T (µg/L)	NH3_Un (µg/L)	NO2 (µg/L)	NO3 (µg/L)	NOX (µg/L)	SO4 (mg/L)	TKN (mg/L)	TN (mg/L)	TOC (mg/L)	TP-L (µg/L)
18-05-23	75.8	7580	68.3	179	2590	620	44.80	144.00	1330.0	<50	<1	<50	<50	<50	370	0.5	0.5	2.4	34
18-06-21	85	45	24.4	637	123	190	3.81	10.10	85.1	430	13	<50	110	110	19	0.8	0.9	5.9	97
18-07-26	119	36100	225	563	10600	1480	197.00	625.00	6340.0	490	10	<50	<25	<25	1550	1.1	1.1	<25	412
18-08-21	100	1020	29.7	296	910	320	9.47	21.30	188.0	180	2	<50	500	500	111	1.8	2.3	5	323
18-09-18	117	29200	198	436	10900	1350	177.00	552.00	5870.0	570	9	<50	<1000	<4000	1430	1.6	1.6	<12.5	233

Table 33: Inorganics results for WQ-8, 2018

SITE WQ-8	ITE WQ-8: HEAVY METALS AND OTHER ELEMENTS																			
		-					-	Cu (µg/L)	Fe (µg/L)	Li (µg/L)	Mn (ua/L)	-					-	U (µg/L)	V (µg/L)	Zn (µg/L)
18-05-23	40	<5	523	76	< 0.05	<0.5	<5	<5	400	19.3	121	1.3	<5	<0.5	13.2	<0.5	1000	<0.5	<1	<5
18-06-21	27	<1	47	111	< 0.01	0.1	<1	<1	360	3.5	115	0.2	<1	0.1	1.5	<0.1	171	0.3	<1	1
18-07-26	70	<20	2250	32	<0.2	<2	<20	<20	1400	98	1620	5	<20	<2	59	<2	4540	2	2	<20
18-08-21	607	20.0	90	245	0.05	0.8	<1	2	4030	7.8	245	0.2	<1	5.6	2.9	<0.1	323	0.7	1	14
18-09-18	20	<20	2130	27	<0.2	<2	<20	<20	1100	81	400	5	<20	<2	49	<2	3760	<2	<1	<20

Figure 17: WQ-8 site location and surrounding land uses

Figure 18: Site photos for the water quality monitoring station WQ-8

4.9 WQ-9

This water quality sampling site is located in the Ruisseau Albert-Gallant, off Babineau Access Road, 320 m after turning to the left off Viaduc Road (turning to the right is Shediac River Road). The samples are taken downstream of the culvert, due to flooding on the other side caused by a beaver dam at the mouth of the culvert, creating conditions unfit for chest waders. The sample site is located approximately 300 m from the tidal zone. The surrounding land uses is mainly residences and large agricultural fields. There is a farming lot (1.2 hectares) along the right side of the brook (looking upstream), with no buffer zone along the total length of its riverbank (100 metres). On the left side of the sampling site is a much larger cultivated farm field; 14.6 Hectares and another lot 5.3 Hectares. The drainage from these fields flows down to the ditch along Shediac River Rd. and Babineau Access Rd., and may flow down to the brook's culvert. There are no trees around any of these farm fields. There is also the presence of the large junkyard of *Bastarache's Auto Salvage*, but there is approximately 1 km of forested buffer between the salvage lot and the head ponds of the brook (as delineated on GeoNB).

The water sampling results for the site WQ-9, for 2018, meet the recommendations for the survival of freshwater aquatic life based on pH. However, levels of dissolved oxygen dropped below the recommendation (6.5 mg/L) for general cold water organisms July, August and September (3.26

mg/L, 5.33 mg/L and 4.95 mg/L respectively). Total phosphorus levels for long-term eutrophic conditions according to the "CCME Guidance Framework for Phosphorus" were in the meso-eutrophic range (20 -35 μ g/L) in May, and in the eutrophic range (35 – 100 μ g/L) from June to September.

Concentrations of aluminum exceeded the CCME water quality guideline (100 µg/L when the pH is \geq 6.5) in the sample taken in May (136 µg/L). Concentrations of iron also exceeded the guidelines in all samples: May (690 µg/L), June (1340 µg/L), July (1380 µg/L), August (940 µg/L) and September (690 µg/L), when the recommendation is 300 µg/L. Concentrations of arsenic exceeded the CCME water quality guideline (5 µg/L) in August with a value of 10 µg/L. Bacterial levels did not exceed the maximum concentration of *E. coli* from Health Canada recreational guideline (\geq 400 MPN/100 mL).

Table 34: Water chemistry data and E. coli results for WQ-9, 2018

SITE WQ-9	: FIEL	DDAT	A COLLE	CTED BY	YSI AND LAI	BSAMP	LES										
Date (yy-	Temp	o (°C)	SAL	DO	E. coli (MPN	ΔΙΚ Τ	CLRA	CO	ND	HARD	Lang_Ind		pН	(pH)	TDS (m	ng/L)	TURB
mm-dd)	Air	Water	(ppt)	(mg/L)	/100mL)	(mg/L)	(TCU)	Field (mS/cm)	Lab (µS/cm)	(mg/L)	(20°C)	Field	Lab	Sat (20°C)	Field	Lab	(NTU)
18-05-23	10.0	14.0	0.11	9.78	52.9	44	50	0.800	121	43.9	-1.03	8.63	7.5	8.5	141.70	67	2.8
18-06-21	19.0	21.6	0.07	8.68	42.2	60	45	0.145	150	57.4	-0.57	7.66	7.7	7.7	100.75	82	3.4
18-07-26	25.0	22.5	0.09	3.26	143.4	79	35	0.183	181	68.4	-0.68	8.62	7.4	8.1	124.80	95	6.1
18-08-21	22.0	18.4	0.08	5.33	71.8	54	44	0.143	152	57.3	-0.92	7.81	7.4	8.3	164.600	78	4.1
18-09-18	19.0	18.5	0.10	4.95	14.6	83	18	0.190	212	83.7	-0.19	8.41	7.8	8.0	141.70	107	2.7

Table 35: Nutrient results for WQ-9, 2018

SITE WQ-	9: NUT	RIENT D	DATA																
Date (yy- mm-dd)	HCO3 (mg/L)	Br (µg/L)	Ca (mg/L)	CO3 (µg/L)	Cl (mg/L)	F (µg/L)	K (mg/L)	3	Na (mg/L)	NH3T (µg/L)	NH3_Un (µg/L)	NO2 (µg/L)	NO3 (µg/L)		SO4 (mg/L)	TKN (mg/L)	TN (mg/L)	TOC (mg/L)	TP-L (µg/L)
18-05-23	43.9	0.03	14.4	0.130	14.9	0.15	0.77	1.92	6.9	<50	<1	<50	<50	<50	<1	0.3	0.3	7.4	29
18-06-21	59.7	0.04	19.5	0.281	12	0.14	0.70	2.12	8.9	<50	<1	<50	<50	<50	<1	0.5	0.5	7.4	59
18-07-26	78.8	0.05	23.3	0.186	10.3	0.14	0.87	2.48	7.6	<50	<1	<50	<50	<50	<1	0.4	0.4	5.3	42
18-08-21	53.9	0.05	19.5	0.127	8.3	0.17	1.20	2.09	7.2	<50	<1	<50	<50	<50	5	0.4	0.4	7	36
18-09-18	82.5	0.04	28.5	0.489	12.8	0.14	1.43	3.05	8.6	<50	<1	<50	<50	<80	<1	0.4	0.4	4.9	38

Table 36: Inorganics results for WQ-9, 2018

SITE WQ-9	: HEAV	Y MET	ALS AN	ND OTH	ER ELE	MENT	S		•											
Date (yy- mm-dd)				Ba (µg/L)			-		Fe (µg/L)	Li (µg/L)	Mn (µg/L)						Sr (µg/L)	U (µg/L)	V (µg/L)	Zn (µg/L)
18-05-23	136	<1	6	36	0.01	0.2	<1	<1	690	0.6	250	0.1	<1	0.2	0.8	<0.1	46	<0.1	<1	3
18-06-21	91	2	8	61	< 0.01	0.3	<1	<1	1340	0.7	884	0.2	<1	0.2	0.7	<0.1	58	0.1	<1	9
18-07-26	43	2	12	102	<0.01	0.2	<1	<1	1380	0.8	765	0.2	<1	0.2	1.0	<0.1	72	0.1	2	2
18-08-21	58	10	12	68	<0.01	0.2	<1	<1	940	0.5	294	0.1	<1	0.1	1.4	<0.1	54	<0.1	1	2
18-09-18	17	<1	8	85	<0.01	0.2	<1	<1	690	0.7	734	0.1	<1	<0.1	1.7	<0.1	100	<0.1	<1	2

Figure 19: WQ-9 site location and surrounding land uses

Figure 20: Site photos for the water quality monitoring station WQ-9

4.10 WQ-10

This water quality sampling site is located off Route 530 (Grande-Digue Rd.), 100 m after Chemin Antoine. The samples are taken upstream of the culvert. The sample site is located approximately 130 m from the tidal zone. The surrounding land uses is mainly residences and a possible agricultural fields (> 1 ha.). There is a buffer zone that separates the field and the brook (average 5-15 m in thickness).

The water sampling results for the site WQ-10, for 2018, meet the recommendations for the survival of freshwater aquatic life based on pH. However, levels of dissolved oxygen dropped below the recommendation (6.5 mg/L) for general cold water organisms in July and September (4.13 mg/L and 2.92 mg/L respectively). Total phosphorus levels for long-term eutrophic conditions according to the "CCME Guidance Framework for Phosphorus" were in the meso-eutrophic range (20 -35 μ g/L) in May and June, in the eutrophic range (35 – 100 μ g/L) in August and September, and in the hyper-eutrophic range (>100 μ g/L) in July. Concentrations of aluminum exceeded the CCME water quality guideline (100 μ g/L when the pH is ≥6.5) in all samples except September. Concentrations of iron also exceeded the guidelines (300 μ g/L) in all samples except September. Bacterial levels exceed the maximum concentration of *E. coli* from Health Canada recreational guideline (≥ 400 MPN/100 mL) in July and August; 2599.4 MPN/100 mL and 1158.8 MPN/100 mL respectively.

Table 37: Water chemistry data and E. coli results for WQ-10, 2018

SITE WQ-1	0: FIE	LD DA1		ECTED B	YSI AND LA	BSAM	PLES										
Date (yy-	Tem	o (°C)	SAL	DO	E. coli (MPN	ΔΙΚΤ	CLRA	00	ND	HARD	Lang_Ind		pH (pH)	TDS (m	ng/L)	TURB
mm-dd)	Air	Water	(ppt)	(mg/L)	/100mL)	(mg/L)	(TCU)	Field (mS/cm)	Lab (µS/cm)	(mg/L)	(20°C)		Lab	Sat (20°C)	Field	Lab	(NTU)
18-05-23	8.0	12.1	0.06	10.88	118.7	18	132	0.097	122	24.2	-1.99	7.90	7.2	9.2	83.88	62	3.4
18-06-21	19.0	18.1	0.08	8.7	248.1	23	141	0.147	170	33.1	-1.55	7.48	7.4	9	109.85	84	4.5
18-07-26	25.0	19.7	0.15	4.13	2599.4	59	24	0.295	321	93.4	-0.93	7.96	7.2	8.1	210.60	158	16.6
18-08-21	22.0	16.5	0.10	7.34	1158.8	43	74	0.177	215	64.1	-1	7.65	7.4	8.4	137.15	107	8.5
18-09-18	17.0	17.2	0.25	2.92	287.8	100	13	0.431	551	155	-0.31	7.37	7.4	7.7	328.90	257	2.7

Table 38: Nutrient results for WQ-10, 2018

SITE WQ-	10: NUT	RIENT	DATA																
	HCO3 (mg/L)		Ca (mg/L)	$\left(u \alpha / l \right)$	Cl (mg/L)	F (µg/L)		Mg (mg/L)	Na (mg/L)	-	NH3_Un (µg/L)	NO2 (µg/L)	NO3 (µg/L)	NOX (µg/L)	SO4 (mg/L)		TN (mg/L)	TOC (mg/L)	TP-L (µg/L)
18-05-23	18.0	30	7.54	27	26.9	220	0.47	1.31	14.2	<50	<1	<50	<50	<50	<1	0.4	0.4	13	31
18-06-21	22.9	40	10.5	54	33.8	220	0.50	1.68	19.9	<50	<1	<50	<50	<50	3	0.5	0.5	13.8	32
18-07-26	58.9	50	30	88	62.2	150	1.14	4.50	19.1	160	1	<50	340	340	<1	1.0	1.3	4.5	246
18-08-21	42.9	50	20.6	101	37.7	190	1.18	3.07	15.5	<50	<1	<50	200	200	<1	0.6	0.8	10.2	95
18-09-18	99.8	50	50.4	236	99.7	150	1.84	7.10	30.3	90	<1	<50	90	90	5	0.4	0.5	2.8	47

Table 39: Inorganics results for WQ-10, 2018

SITE WQ-1	10: HEA\	Y ME	ALS A	ND OT	HER EL	EMEN	тs	-					-		-			-		
Date (yy- mm-dd)		As (µg/L)					Cr (µg/L)		Fe (µg/L)	Li (µg/L)	Mn (µg/L)	-					Sr (µg/L)	U (µg/L)	V (µg/L)	Zn (µg/L)
18-05-23	214	<1	5	27	0.01	0.2	<1	<1	510	0.2	97	<0.1	<1	0.3	0.6	<0.1	25	<0.1	<1	1
18-06-21	204	<1	6	33	0.01	0.1	<1	<1	680	0.3	101	<0.1	<1	0.3	0.8	<0.1	36	<0.1	<1	1
18-07-26	274	<1	11	93	0.06	0.9	<1	<1	1400	0.4	2450	<0.1	<1	<0.1	2.1	<0.1	81	0.1	2	5
18-08-21	161	<1	11	50	0.02	0.4	<1	<1	980	0.3	703	0.1	<1	0.5	1.5	<0.1	58	<0.1	1	3
18-09-18	5	<1	17	61	<0.01	<0.1	<1	<1	140	0.4	544	<0.1	<1	<0.1	2.1	<0.1	109	<0.1	<1	1

Figure 21: WQ-10 site location and surrounding land uses

Figure 22: Site photos for the water quality monitoring station WQ-10

4.11 WQ-11

This water quality sampling site is located off Route 530 (Grande-Digue Rd.), just before the Chemin des Soeurs. The samples are taken upstream of the culvert. The sample site is located approximately 80 m from the tidal zone. The surrounding land uses is mainly residential and agricultural farms. The farm lands are made up of various parcels of land, spanning over 58 Hectares of land leading up to the watershed boundary. There is very little evidence of any tree buffer over this area from aerial imagery, except for one forested parcel and a few thin lines of trees along property lines.

The water sampling results for the site WQ-11, for 2018, meet the recommendations for the survival of freshwater aquatic life based on pH. In September, the field pH reading was below this limit (6.46), but the pH tested in the lab was within the normal range. The dissolved oxygen levels fell below the recommendation (6.5 mg/L) for general cold water organisms in July, August and September (0.04 mg/L, 2.49 mg/L and 2.05 mg/L respectively). Total phosphorus levels for long-term eutrophic conditions according to the "CCME Guidance Framework for Phosphorus" were in the eutrophic range (35 – 100 μ g/L) in May, June and July, and in the hyper-eutrophic range (>100 μ g/L) in August and September.

It is important to note that this site is impacted by tides, and that marine water disqualifies several flagged parameters that only apply for freshwater: chloride, aluminum, boron, iron and zinc. There are no marine limits set for these elements. There is a correlation between these elevated elements and the salinity content listed in Table 40. Bacterial levels exceed the maximum concentration of *E. coli* from Health Canada recreational guideline (\geq 400 MPN/100 mL) in July (8164 MPN/100 mL), August (774.6 MPN/100 mL) and September (2599.4 MPN/100 mL).

SITE WQ-1	1: FIE	LD DA	TA COLLI	ECTED B	YSI AND LA	AB SAM	PLES		-		•			•			
Date (yy-	Tem	o (°C)	SAL	DO	E. coli (MPN	ΑΙΚ Τ	CLRA	CO	ND	HARD	Lang_Ind		pH (pH)	TDS (m	ng/L)	TURB
mm-dd)	Air	Water	(ppt)	(mg/L)	/100mL)	(mg/L)	(TCU)	Field (mS/cm)	Lab (µS/cm)	(mg/L)	(20°C)		Lab	Sat (20°C)	Field	Lab	(NTU)
18-05-23	7.0	11.8	0.92	8.62	32.3	36	70	1.370	1070	143	-1.5	7.38	7.1	8.6	1170.00	586	2.0
18-06-21	19.0	21.7	20.41	8.55	259.0	49	52	31.930	1060	95.9	-1.08	6.74	7.4	8.5	22113.00	462	2.5
18-07-26	25.0	22.1	23.46	0.04	8164.0	102	23	34.940	18200	779	-0.5	7.53	7.3	7.8	24056.50	4200	7.2
18-08-21	22.0	25.2	24.80	2.49	774.6	104	21	39.150	42300	4250	0.01	6.97	7.2	7.2	25000.34	21000	19.9
18-09-18	17.0	23.4	26.44	2.05	2599.4	111	13	39.940	19100	3150	-0.1	6.46	7.2	7.3	26892.00	12400	27.7

Table 41: Nutrient results for WQ-11, 2018

SITE WQ-	11: NUT	RIENT	DATA																
	HCO3 (mg/L)		Ca	(110/1)	Cl (mg/L)	F (µg/L)	K (mg/L)	Mg (mg/L)	INd	NH3T (µg/L)	NH3_Un (µg/L)	NO2 (µg/L)		NOX (µg/L)	SO4 (mg/L)		TN (mg/L)	TOC (mg/L)	TP-L (µg/L)
18-05-23	36.0	1090	20.4	43	302	230	7.34	22.30	176.0	<50	<1	<50	130	130	34	0.5	0.6	9.3	36
18-06-21	48.9	57	18.6	115	251	220	4.47	12.00	109.0	<50	<1	<50	110	110	35	0.5	0.6	7.9	44
18-07-26	102.0	8000	72.9	191	2230	580	47.40	145.00	1330.0	60	<1	<50	<50	<50	310	0.6	0.6	<10	47
18-08-21	104.0	45800	242	155	11200	1440	269.00	886.00	6720.0	560	4	<50	<500	<500	1580	1.2	1.2	<10	375
18-09-18	111.0	32900	223	165	5510	840	199.00	629.00	5010.0	150	<1	<50	<50	<50	778	6.6	6.6	<10	990

SITE WQ-1	11: HEA\	Y ME	TALS A	ND OT	HER EL	EMEN	rs		-				-	-				-		
Date (yy- mm-dd)		-	-	Ba (µg/L)			-	Cu (µg/L)	-	Li (µg/L)	Mn (ua/L)			-				U (µg/L)		Zn (µg/L)
18-05-23	110	<1	82	50	0.01	0.3	<1	<1	660	3	314	0.3	<1	0.2	2.8	<0.1	212	0.1	1	6
18-06-21	70	<1	52	58	<0.01	0.2	<1	<1	620	1.9	301	0.3	<1	0.2	2	<0.1	174	0.1	<1	3
18-07-26	140	<10	570	140	<0.1	~ 1	<10	<10	700	21	1440	1	<10	1	15	<0.1	1170	<1	20	100
18-08-21	120	<50	3140	200	<0.5	<5	<50	<50	2000	123	3380	7	<50	<0.50	79	<5	5890	<5	120	<50
18-09-18	30	<20	2440	20	<0.2	<2	<20	<20	2900	80	2320	5	<20	<2	54.0	<2	4180	<2	50	<20

Table 42: Inorganics results for WQ-11, 2018

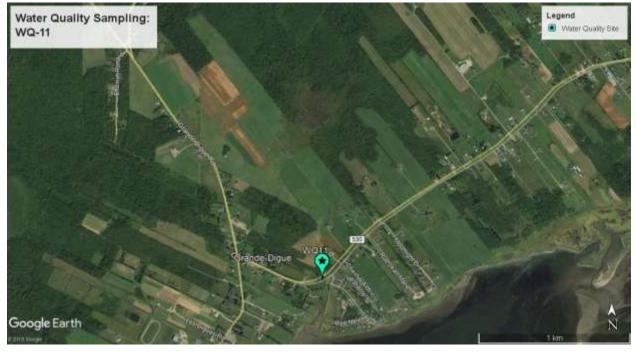


Figure 23: WQ-11 site location and surrounding land uses

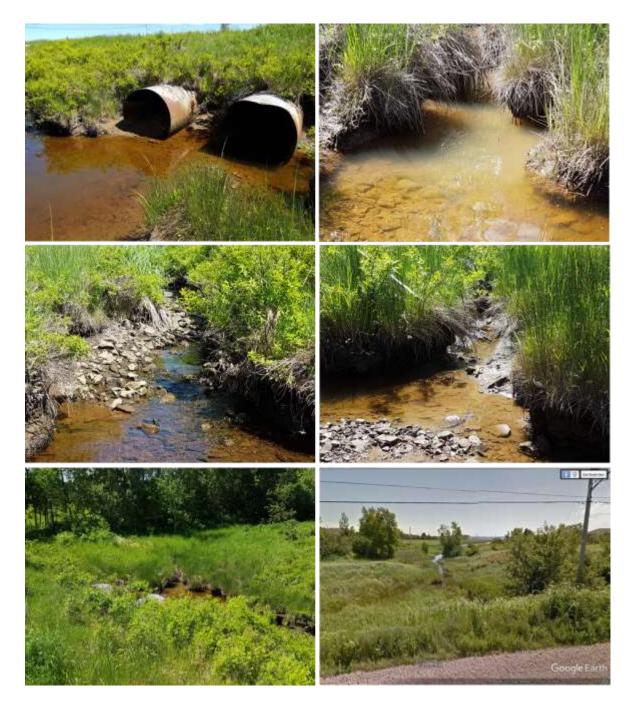


Figure 24: Site photos for the water quality monitoring station WQ-11

4.12 Bacterial Sampling Summary

The bacterial levels in some of the small streams sites shows the need for more investigation around land uses. Valuable data has been collected in 2018 and will be used in the planning of future studies and remediation action plans.

Most sampling stations had at least one instance of a bacterial spike over the recommended 400 MPN/100 mL limit in 2018. The sites that did not have an instance of bacterial spike are; WQ-5, WQ-6, WQ-7, and WQ-9. Based on the bacterial levels alone, the stations that merit further investigations for sources of fecal coliforms are; WQ-2, WQ-3, WQ-4, WQ-8, WQ-10 and WQ-11.

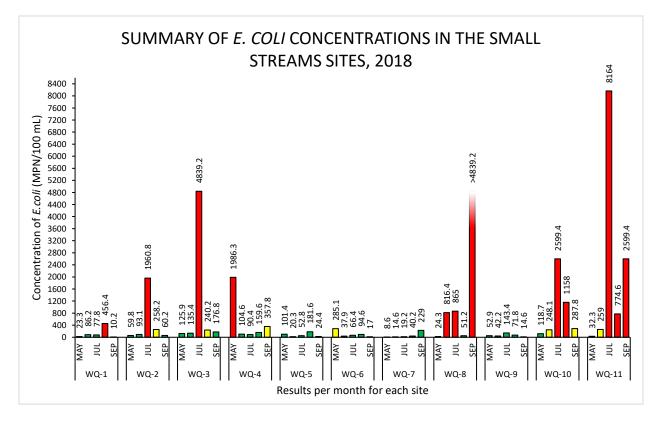


Figure 25: Summary of water quality results for E. coli, small streams sampling 2018

4.13 Discussion

The first disclaimer is that SBWA does not by any means proclaim to be water quality experts. The purpose of this project is to collect samples, organize the data, look at surrounding land uses and buffer zones, then pass on the information to experts. We can point out trends from our limited sampling results, but changes occur so quickly that general patterns are not always evident. Our sampling is simply a snapshot of the results on that collection day. It would be very expensive to monitor water quality changes on a daily or even weekly basis. As a non-profit environmental organization, we do not have the resources or capacity for this. Our goal is to look for gross abnormalities in general patterns and hope to identify possible causes.

Many of the flagged parameters above can have a wide range of negative impacts on various aquatic species when concentrations exceed their threshold of tolerance. This threshold varies depending on species, life stage, and sometimes concentrations of other parameters.

The concentrations for the following metals were below their respective detection limits for all samples at every site. These metals were not included in the above tables; Silver (Ag), Beryllium (Be), Bismuth (Bi), Selenium (Se), Tin (Sn), Tellurium (Te), Thallium (Tl).

Most sites were generally under the limits for *E. coli* based on Health Canada Recreational Guidelines. Four stations had at one instance of bacterial spike, one station had 2 instances of elevated bacterial levels, and two stations (WQ-8 and WQ-11) had 3 instances of elevated bacterial levels. These last two stations were also the most severe sites for *E. coli* in 2017, and merit further investigation.

All pH levels were found to be within the guidelines; between 6.5 and 9. However, dissolved oxygen was very poor in certain areas during the summer months. With very warm temperatures and very little or infrequent rainfall in the summer 2018, the water in some of those sampling sites became very warm and stagnant. The presence of bacteria and algae can further decrease the levels of dissolved oxygen available for aquatic life.

Looking at total phosphorous levels, most of our site falls into mesotrophic to eutrophic range. However, four stations have sample levels in the hyper-eutrophic range (> $100 \mu g/L$); WQ-7, WQ-8, WQ-10 and WQ-11. The highest level of total phosphorous measured was at WQ-11 in September, at 990 $\mu g/L$.

Inorganic's results that were over the CCME recommended water quality guideline were mainly iron and aluminum. There were a few instances of copper, boron and chloride that also surpassed the limits. The province of New Brunswick is known to have higher levels of naturally occurring aluminum and iron. More investigation ad consultation with experts is needed to interpret the inorganic results.

5 Eelgrass Monitoring in the Shediac Bay

The SeagrassNet program is a global seagrass monitoring network that monitors the status of seagrass and the threats to these ecosystems. The program started in 2001, and now includes more than 126 sites in 33 countries. The protocol for the sampling can be found at <u>www.seagrassnet.org</u>.

The Southern Gulf of Saint Lawrence Coalition on Sustainability (Coalition-SGSL) has implemented the SeagrassNet program in Atlantic Canada since 2015. They have provided equipment and training to the SBWA for the monitoring program to begin in the Shediac Bay. The first monitoring site was established in the estuary of the Scoudouc River in 2016, and a second site was established in the Shediac River estuary in 2017. In 2018, a third monitoring site was added in the Shediac Bay, near the mouth of the South Cove Estuary (near Pointe-du-Chêne).

The data collected from these annual surveys will serve to measure changes in eelgrass density in these sensitive habitats. Since the first appearance of the invasive green crab in the Shediac Bay in 2010. Green crab population monitoring has shown a trend of constant increase in their numbers. The green crab is an invader is capable of devastating eelgrass habitats. The SeagrassNet program provides a protocol to measure the impacts of the green crab in the Shediac Bay.

The SBWA is working with the Coalition-SGSL eelgrass consortium to have access to experts to evaluate the results. It will take a few more years of data before any trends can be confirmed for eelgrass health and density.

A map of eelgrass beds for the Shediac Bay is being produced by the Coalition-SGSL in partnership with DFO. The maps will be available in the spring of 2019. These maps will help determine areas that may be suitable for future restoration projects. A more detailed report on the eelgrass project will be available in March 2019.

Figure 27: Sampling quadrant

Figure 26: Green crabs in sampling trap

5.1 Scoudouc River – Heron Lane

This eelgrass monitoring site is located in the estuary of the Scoudouc River, near the small private road Heron Lane (N46°13'32.3" W64°33'26.2"). The SBWA received permission from the property owners to use the road and park vehicles in a convenient location for easy access to the beach. This site was established and surveyed in 2016 and surveyed again in 2017. In 2018, the team spent a significant amount of time looking for the permanent station markers, using GPS and snorkelling to search the substrate for the anchors, but none were found. Due to a lack of time, this site was not surveyed in 2018. In 2019, the team will attempt to locate the anchors, and if they are not found, new anchors will be installed. Survey photos and field sheets can be found in Appendix B and C.

Figure 28: Google Earth satellite image of the Scoudouc River estuary and the location of each station markers in the site.

Figure 29: Epiphytes present on eelgrass in the Scoudouc River site in 2016.

5.2 Shediac River

The Shediac River site is located east of the bridge on Route NB-134 (N46°16'16.54" W64°34'23.30"). This site was established and surveyed in August of 2017, and a second survey was performed in August 2018. Four station markers (screw anchors) had been torn out of the substrate over the winter 2017-2018, and were replaced using a GPS, compass bearings and measuring tape triangulation. Survey photos and field sheets can be found in Appendix B and C.

Figure 30: Google Earth satellite image of the Shediac River estuary and the location of the eelgrass monitoring transects

Figure 31: Photo of the Shediac River site near the Route 134, Shediac Bridge.

5.3 Shediac Bay – Stead Street/South Cove

This eelgrass monitoring site is located in the Shediac Bay, near the mouth of the estuary of South Cove, near Pointe-du-Chêne (N46°13'53.7" W64°31'27.34"). This site was newly established in 2018, and its first survey was performed on August 7 & 8th. Survey photos and field sheets can be found in Appendix B and C.

Figure 32: Google Earth satellite image of the Shediac Bay near Pointe-du-Chêne/South Cove estuary, and the location of the Stead Street eelgrass monitoring transect

Figure 33: Photo of eelgrass survey in a healthy eelgrass bed surrounded by fish

5.4 Restoration 2018

In partnership with *Homarus*, the SBWA participated in an eelgrass restoration pilot project in the Shediac River, during the summer of 2018. SBWA staff assisted the Homarus biologist in the installation and transplanting eelgrass into specially design quadrants meant to measure the efficacy of two different transplanting methods; freehand planting and planting using empty mollusk shells.

Due to the plans for a new bridge crossing the Shediac River, part of the twinning of Highway NB-11, the SBWA decided to collect the eelgrass located in the construction zone of the new

bridge. Since the eelgrass would be destroyed anyway, it was the perfect opportunity to test the transplant methods on a greater scale than the quadrants.

Using simple snorkelling equipment, SBWA staff dove to collect thousands of eelgrass plants in the shallow waters of the bridge construction zone. Floating crates were built by drilling holes into storage containers and fitting pool floaters for easy collection and transportation of the eelgrass. The plants were gently excavated from the soft substrate (mixture of sand and fine sediments) by digging with both hands and lifting from under the rhizome system, maintaining as much connected rhizomes as possible. Any eelgrass shoots with visible fish eggs were left alone.

Once collected, a portion of the plants were threaded through pre-drilled shells. The shells used were oyster and quahog shells, collected in other areas of the Shediac Bay and cleaned properly before use.

Figure 34: Eelgrass collection and photo of rhizomes

Figure 35: Threading eelgrass plants through pre-drilled shells

Transplanting eelgrass was done by first digging a hole approximately 5 cm into the substrate with an open hand, then inserting the shell or bare rhizomes at a 45 degree angle. Then, taking care of completely covering the rhizomes with sediment, firmly pressing down to compact as much substrate on top as possible.

In addition to shells, rocks with reasonable weight were collected along the shore to be used as anchors for some of the eelgrass that was absent a shell. It is important to note that shell collection, cleaning and drilling can be a time-consuming process. In order to maximize the number of transplanted eelgrass from the construction impact zone to the new bed, on-site materials were used to increase the chances of survival of the plants.

Figure 36: Transplanting eelgrass using oyster shells

The study was continued by Homarus that revisited the transplant area in August and determined that the transplants had survived except for one quadrant containing eelgrass anchored with oysters that had been destroyed. The site will be re-evaluated in 2019 to determine long-term survival rate.

Figure 37: Eelgrass Restoration Map; Collection and Transplant Areas, 2018

6 WESP-AC Salt Marsh Assessment

The Shediac Bay Watershed Association did a trial assessment using the Wetland Ecosystem Services Protocol for Atlantic Canada (WESP-AC) for two tidal wetlands in the Shediac Bay. The first marsh is located in Pointe-du-Chêne and the second one in Grande-Digue. These marshes were chosen as they are of interest to the community to serve as educational areas to learn about wetlands.

The Grande-Digue marsh is of interest to the community group Sentier Pluriel that has developed a partnership with the Université de Moncton to develop interpretation panels and an educational trail in the marsh area. The second marsh is owned by the Anglican parish of Shediac. A partnership is being formed with the SBWA to create an educational park on a vacant lot next to the wetland.

The goal of completing the WESP-AC assessment was to gather any information that might be used in the educational materials. Also, the association wanted to test the methodology as it may apply to evaluate other wetlands that are in need of restoration.

Figure 38: Grande-Digue marsh

The WESP-AC provides ratings for 9 functions. These ratings are relative estimates but can serve to compare wetlands or measure the consequences of wetland alterations. Tidal wetlands serve other functions such as carbon storage, support of shellfish and other invertebrates. These other functions have not been included in the WESP-AC as information was lacking to create a rapid assessment. The definitions of the different functions are presented in the following table. More background information on the studies and factors that determine the evaluation can be found in the protocol (Annex 1).

WESP-AC Functions definitions

Storm Surge Interception

Definition: The effectiveness for intercepting tidal surges associated with infrequent but severe storm events, and reducing their height. Storm-surge elevation is the difference between the observed water level during the surge and the level that the tide would normally rise to in the absence of storm activity.

Water Purification

Definition: Effectiveness for maintaining or restoring naturally occurring levels of suspended sediment, salinity, inorganic nutrients, metals, hydrocarbons, and other substances in coastal waters.

Organic Nutrient Export

Definition: The effectiveness for producing and subsequently exporting organic nutrients, either particulate or dissolved, along with associated compounds and elements such as iron.

Fish Habitat

Definition: The capacity to support an abundance and/or diversity of resident and/or anadromous fish species. Support occurs only seasonally or for brief times for the purpose of spawning, rearing, or feeding. The scoring model will not predict habitat suitability accurately for every tidal wetland fish species in this region.

Waterbird Habitat

Definition: The capacity to directly support an abundance or diversity of waterbirds, mainly those that migrate or winter in the region but including a few that sometimes nest in tidal wetlands. This includes shorebirds (sandpipers, plovers, phalaropes, etc.), waterfowl (ducks, geese, swans), gulls, cormorants, loons, grebes, and others. The scoring model will not predict habitat suitability accurately for every species in this group.

Songbird and Raptor Habitat

Definition: The capacity to directly support an abundance or diversity of songbirds and raptors, both residents and migrants, and especially those that commonly feed or nest in saline tidal wetlands and ones that commonly feed or nest in tidal fresh or brackish wetlands. The scoring model will not predict habitat suitability accurately for every species in this function group.

Biodiversity Maintenance

Definition: The capacity to directly support plant and animal species which, by their rarity or narrow habitat requirements, contribute disproportionately to the overall richness of flora and fauna of this region.

Wetland Stability

Definition: The likelihood that the tidal wetland will persist physically in the face of rising sea levels and climate change.

Public Use or Recognition

Definition: The potential and/or actual capacity to support non-consumptive (e.g., birding, education, research) and/or sustainable consumptive (e.g., hay harvesting, fishing) uses.

Source: Manual for Wetland Ecosystem Services Protocol for Atlantic Canada (WESP-AC), Tidal Wetlands: New Brunswick Department of Environment and Local Government, April 2018

6.1 Pointe-du-Chêne Marsh

A portion of the marsh in South Cove Pointe-du-Chêne was evaluated. The section that was evaluated was chosen as it will be the first phase in a future marsh education park. The site was accessed from the walking trail at the end of Railway Avenue.

Figure 39: Assessment area for Pointe-du-Chêne Marsh

6.1.1 Results

The following table shows the scores for the WESP-AC evaluation followed by a brief explanation of the factors that have influenced the score.

Functions or Attributes	Normalized Score	Rating
Storm Surge Interception (SS)	4,72	Higher
Water Purification (WP)	1,09	Lower
Organic Nutrient Export (OX)	4,07	Lower
Fish Habitat (FH)	5,82	Moderate
Waterbird Habitat (WH)	2,61	Lower
Songbird & Raptor Habitat (SRH)	6,01	Moderate
Biodiversity Maintenance (BM)	4,34	Moderate
Wetland Stability (WS)	5,95	Higher
Public Use & Recognition (PUR)	5,11	Higher

Storm surge interception – The score for storm surge interception is higher as the vegetation in salt marshes provides friction and reduces the height of incoming tidal surges. Although, the degree of protection the marsh offers is dependent on the tide and direction of the winds. A storm surge when marsh vegetation is already covered by the high water still risk damages to surrounding properties.

Water purification – The water purification rating for the marsh is considered lower as the marsh width and area are taking in consideration and this marsh area has been narrowed by residential development and infilling. The marsh still serves the function of water purification by retaining and depositing sediment over time.

Organic nutrient export – Marshes are deemed to store carbon and other nutrients because of the high productivity of vegetation that supports the food webs. The Pointe-du-Chêne Marsh has a lower rating for this function as the upper marshes is a residential area and there are few tidal channels in the marsh.

Fish habitat – The fish habitat for the Pointe-du-Chêne Marsh is considered moderate as there is no fresh water stream flowing in the marsh and few tidal inlets.

Waterbird habitat – Waterbird habitat is considered lower for this marsh as it is small and does not have extensive open water that would benefit waterbirds such as ducks.

Songbird and raptor Habitat – The marsh has moderate habitat for songbirds and raptors. A good percentage of the marsh is considered high marsh, the preferred habitat for songbirds.

Biodiversity maintenance- This marsh has the presence of the vegetation species characteristic of a salt marsh. The presence of a rare species would have rated the site higher.

Wetland stability – If no further development is done along the wetland edge, the marsh should be able to migrate normally with Sea level rise.

Public use and recognition – The presence of the walking trail next to the marsh gives a good vantage point to appreciate this marsh. A project proposal is submitted to designate the marsh as an educational park that will increase public use in a sustainable manner.

6.2 Grande-Digue Marsh

The Grande-Digue marsh is situated south of route 530 and can be accessed by following the shoreline from the fishing wharf in Caissie Cape or by contacting a local landowner.

Figure 40: Assessment area for Grande-Digue Marsh

6.2.1 Results

The following table shows the scores for the WESP-AC evaluation followed by a brief explanation of the factors that have influenced the score.

Functions or Attributes	Normalized Score	Rating
Storm Surge Interception (SS)	3,30	Moderate
Water Purification (WP)	0,18	Lower
Organic Nutrient Export (OX)	5,58	Moderate
Fish Habitat (FH)	6,47	Moderate
Waterbird Habitat (WH)	3,59	Moderate
Songbird & Raptor Habitat (SRH)	6,24	Moderate
Biodiversity Maintenance (BM)	4,59	Moderate
Wetland Stability (WS)	4,88	Moderate
Public Use & Recognition (PUR)	4,09	Higher

Table 44: WESP-AC scores for Grande-Digue Marsh

Storm surge interception – The score for storm surge interception is moderate as the vegetation in salt marshes provides friction and reduces the height of incoming tidal surges. The degree of protection the marsh offers is dependent on the tide and direction of the winds. A storm surge when marsh vegetation is already covered by the high water still risk damages to surrounding properties.

Water purification – The water purification rating for the marsh is considered lower as the presence of ditches in the marsh reduces the ability to filter water compared to a marsh with no modifications to its flow. The marsh still serves the function of water purification by retaining and depositing sediment over time.

Organic nutrient export – Marshes are deemed to store carbon and other nutrients because of the high productivity of vegetation that supports the food webs. The Grande-Digue Marsh as a moderate rating for this function as the drainage has been modified and a portion of the high marsh is mowed.

Fish habitat – Fish habitat is considered moderate for the Grande-Digue marsh due to the presence of ditches and the lack of a freshwater stream flowing into the marsh.

Waterbird habitat – Waterbird habitat is considered moderate for this marsh as it is large and has open water and ponds that benefit waterbirds such as ducks. The surrounding area is also open and undeveloped.

Songbird and raptor Habitat – The marsh has moderate habitat for songbirds and raptors. The large size and elevated percentage of the marsh that is in the high zone increase preferred habitat for songbirds.

Biodiversity maintenance- The marsh has the vegetation and biodiversity that is normal for salt marshes in the area. No rare species was found during the survey.

Wetland stability – The wetland has no development in its vicinity and will be able to adapt to sea-level rise. The presence of drainage ditches lowered the rating from high to moderate.

Public use and recognition – The marsh now has a trail and observation deck that will allow the public to enjoy the marsh. This marsh is considered an important part of the local landscape and is protected by zoning.

Figure 41: SBWA staff during WESP-AC assessment and Sea lavender, a salt marsh plant

7 Buffer Zone Enhancement in Boudreau-Ouest

The Boudreau-Ouest marsh is a small estuary of the unnamed brook at Cap-Brulé located next to route 133. This salt water marsh was in need of restoration due to erosion and the lack of buffer zones. Landowners' permission and a WAWA permit was acquired in order to plant native trees to create a buffer zone on each side of the stream. The planting of 417 native trees was conducted on June 5, 7, 13, 14 and 21. A diversity of trees was selected, including: white spruce, tamarack, red maple, red oak, grey and yellow birch and trembling aspen.

Unfortunately, there was a miscommunication between one of the landowners and the person that mows the field every summer. During the summer, the field in which trees were planted on one side of the stream, was mowed. It is unknown how many trees died during this process. However it was observed that some survived. A thorough survival count will be conducted in 2019. Following this tragic event, the SBWA is to place signs on all of their newly planted area. The signs simply indicates that there are young trees planted in the area in order to increase the buffer zone and stabilize the stream banks.

Figure 42: Map of the tree planting site at the Boudreau-Ouest saltmarsh

Figure 43: Photos of tree planting site in the Boudreau-Ouest saltmarsh

8 Public Education, Outreach and Involvement

8.1 Boater Awareness Program

Educational materials for boaters developed in 2018 was distributed to local marinas during the summer. The pamphlet and poster lists pump-out stations locations that are available in Southeast New Brunswick to properly dispose of sewage. Both marinas in Shediac Bay have updated their systems in 2018.

The Shediac Bay Watershed Association will be participating in an environmental committee for the Blue Flag designation of the Shediac Bay Yatch Club. The Blue Flag is an international ecolabel to ensure marinas meet strict criteria in different categories. The Shediac Bay Watershed Association will expand its partnership with the marina to have more educational materials and events at the Yatch Club.

The Pointe-du-Chêne Harbour Autority has an advisory committee to oversee recommendations for future maintenance and development of the wharf. The SBWA is participating in this committee to provide recommendations regarding the environmental impacts and opportunities for environmental education or restoration.

These partnerships that have been formalized in 2018 will allow the SBWA to expand environmental stewardship activities with pleasure boat users.

Figure 44: Boater Awareness pamphlet side 1 (English)

8.2 Beach Sweep

In celebration of World's Oceans Day, a public beach sweep event is organized every year by the SBWA, in partnership with the Town of Shediac. This activity aims to combat marine litter, to raise awareness, and contribute to the protection and conservation of our marine environment in the Shediac Bay. The event was advertised to begin at the Homarus Eco-Centre, at the Pointe-du-Chêne wharf on Saturday, June 9 2018.

It was a beautiful warm sunny day, and 17 volunteers showed up to pick up trash along the coastline of the Town of Shediac. SBWA staff greeted volunteers and provided them with gloves, garbage bags and small handout gifts.

People were directed to different parts of the coastline in order to cover as much ground as possible. There were designated drop-off points for their garbage bags, which would then be picked up by staff of the Town of Shediac. Our volunteers were then invited to a lunch of subs donated by the *Shediac Subway*, along with fruit and vegetable platters donated by the *Shediac Coop IGA*. Special thanks go out to Oceanside Fitness Gym and Shediac Dixie Lee, for donated gift certificates as prize draws for the volunteers; 2 one month free memberships at the gym, and two 10\$ gift cards at Dixie Lee. Other toy prizes were drawn for the children participating in the event.

In total, 14 large garbage bags in addition to larger trash items were collected by the volunteers and brought back to the Homarus Eco-Centre.

It is not a surprise that the items found in greater quantities includes cigarette buds, food wrappers, coffee cups, plastic bags, Styrofoam, cans, bottle caps, etc.

Based on volunteer feedback an estimate of 3.5 km of coastline was cleaned that day.

Figure 45: Annual Beach Sweep June 9, 2018

8.3 TD Tree Day 2018

Every year, the Shediac Bay Watershed Association (SBWA) teams up with TD Bank and members of the community to plant 150 trees as part of the TD Tree Days events throughout Canada. On September 22nd, 34 motivated volunteers, TD employees and the SBWA staff planted 170 native trees to establish a buffer zone for the protection of a salt marsh located in Pointe-du-Chêne. Everyone gathered at the site at 9 in the morning. Coffee, water and snacks were provided by TD.

To begin the event, Rémi Donelle of the SBWA, gave a presentation on the importance of protecting wetlands. He emphasized the importance of establishing a good buffer zone and the importance to help increase the biodiversity of the area by planted various species of native trees. After the presentation, everyone grabbed a shovel to plant the 170 native trees in the designated area.

Figure 46: Photo of the presentation before the tree planting event and a photo of the volunteers at work.

Figure 47: Photo of the TD Tree Days site and volunteers working

Only native trees were chosen for this tree planting event. The trees were purchased from two local nurseries: Sunrise Nursery and Springfield Trees. SBWA and Petitcodiac Watershed Alliance (PWA) provided the shovels for the event. After the event, each tree was verified to see if they were planted properly.

Figure 48: Aerial view of the TD Tree Days site in Pointe-du-Chêne

The 2018 TD Tree Days event was a success. All the 170 trees were planted in just one hour, which is very impressive. The SBWA would firstly like to thank the Anglican Parish of Shediac for giving permission to have this wonderful event on their land. The SBWA would also like to thank PWA for their generosity in lending their shovels for the event.

Figure 49: Group photo of the volunteers

8.4 Educational Kiosks

8.4.1 Shediac Farmer's Market

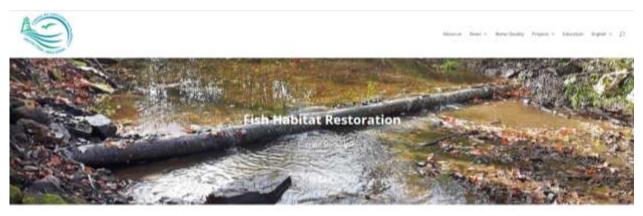
An education kiosk was displayed on Sundays at the Shediac Farmer's market, for 10 weeks out of the summer. The main objective was to speak on water conservation and stormwater management, and giveaway water conservation kits and rain barrels. SBWA staff and summer students talked to visitors of all ages on the various other projects of the year. In the summer of 2018, staff spoke to approximately 450 visitors about the watershed group, local environmental issues and projects realized to mitigate these issues. The market kiosk is always a great tool to find people interested in receiving free rain barrels and water conservation kits for their homes.

Figure 50: Shediac Farmer's Market in the Park

8.4.2 Lobster Festival

In partnership with the Homarus Eco-centre, a kiosk was set up for four days at the Shediac Lobster festival from July 4th to July 7th. Our summer students spoke of our projects in the same fashion as the Shediac Farmer's market in the Park.

Figure 51: Shediac Lobster Festival


8.5 Media Outreach

8.5.1 Newsletter

A bilingual newsletter was produced during the 2018-2019 fiscal year. The newsletter display information and photos on the various projects that the SBWA has been doing in the year. The Association had 250 copies produced for each edition, printed on 100% recycled paper. The newsletters are distributed to various businesses, medical offices, hair salons, and anywhere else that had a waiting area or that was appropriate to leave newsletters for the public to take. The rest were distributed during the Shediac Market, during public presentations and other meetings. The newsletters can be found on the Shediac Bay Watershed Association website.

8.5.2 Socials Medias and Website

The SBWA is working to keep its website and social media up to date, posting photos and short description of activities and projects. The SBWA now has a dedicated employee who focuses on outreach and communications, and the design and production of educational materials. Therefore, 2018 was a turning point for social media outreach. See Table 45 for details.

www.shediacbayassociation.org

www.facebook.com/#!/shediacbaywatershedassociation

Published Date	Genre	Number of times your Page's post entered a person's screen (Total Count)	Published Date	Genre	Number of times you Page's post entered a person's screen (Total Count)
1-23-18	Photo	142	7-18-18	SharedVideo	112
2-2-18	Link	110	7-18-18	Photo	159
2-25-18	SharedVideo	181	7-19-18	SharedVideo	87
3-9-18	Photo	144	7-21-18	Link	164
3-13-18	Photo	138	7-24-18	Video	1048
3-21-18	Photo	127	7-24-18	Photo	518
3-28-18	Photo	105	7-24-18	Link	446
4-4-18	Photo	152	7-25-18	Photo	172
4-8-18	SharedVideo	173	7-26-18	Photo	470
4-26-18	Link	593	8-1-18	Photo	163
4-26-18	Link	427	8-2-18	Video	1004
4-26-18	Link	112	8-6-18	Link	194
4-27-18	Link	678	8-8-18	Photo	249
5-1-18	SharedVideo	81	8-9-18	Photo	806
5-2-18		536	8-9-18	Video	4087
5-3-18	Status	141	8-14-18	Photo	468
5-3-18	Status	182	8-15-18	Photo	439
5-8-18	Link	431	8-20-18	Photo	574
5-10-18	Photo	465	8-21-18	Photo	173
5-10-18		413	8-29-18	Photo	187
5-11-18		75	9-5-18	Photo	163
5-16-18	Photo	0	9-7-18	Link	80
5-16-18		272	9-12-18	Photo	143
5-20-18	Link	73	9-13-18	Link	362
5-22-18	Photo	1117	9-19-18	Photo	197
5-23-18	Photo	474	9-19-18	Photo	777
5-31-18	Status	198	9-20-18	Link	202
5-31-18	Status	172	9-20-18	Link	96
6-5-18	Photo	805	9-24-18	Photo	440
6-7-18	Photo	411	9-26-18	Photo	196
6-12-18	Link	325	9-26-18	Photo	2503
6-13-18	Photo	1178	10-2-18	Video	1139
6-14-18	Photo	64	10-2-18	Video	1400
6-19-18		345	10-3-18	Photo	793
6-20-18	Photo	619	10-10-18	Photo	235
6-21-18	Link	65	10-16-18	Photo	531
6-26-18	Link	83	10-31-18	Photo	240
7-11-18	Photo	168	11-1-18	Photo	238
7-12-18	Photo	246	11-7-18	Photo	3352
7-12-18	Photo	81	11-14-18	Photo	202
7-16-18	SharedVideo	91	11-27-18	Photo	535
7-17-18	Photo	79			
				TOTAL	37,616

Table 45: SBWA Social Media Outreach 2018

9 Closing Comments

The evaluation of the Health of Shediac Bay program has terminated its third year. The aim of the program is to identify areas and ecosystems that can benefit from restoration and gather data on the health of the Shediac Bay.

The water quality monitoring is showing some areas that have samples with high bacterial counts in small streams. Land use around these areas will be examined to determine if the cause of the contamination can be found. Landowners will be invited to participate in restoration efforts and stewardship programs to reforest the streams.

The Shediac Bay Watershed Association will also be working more closely with the Town of Shediac to develop storm water management projects and stewardship activities in the town limits.

When dealing with non-point source pollution in a watershed, one cannot be expected to solve the issues of human activities overnight. Problems related storm water runoff and faults in both private and municipal infrastructure can take several years and even decades to be detected and resolved. Collaborations between environmental groups, businesses, private citizens and government are crucial in the development and implementation of an action plan.

The Coalition for the Sustainability of the Southern Gulf of Saint Lawrence coordinates a working group on eelgrass monitoring and restoration. The working group brings, government agencies, academics, ENGO's and First Nations around the table to discuss different projects on eelgrass that is conducted in the region. The eelgrass beds of Shediac Bay have been surveyed by different methods to determine the present extent of the beds. The SeagrassNet protocol will help validate data that is collected remotely. A final eelgrass monitoring site will be added in Grande-Digue to have sites in all areas around the bay. It will take several years of monitoring to determine if the green crab has a negative impact on eelgrass and if restoration or protection measures are needed.

Salt marshes are an important part of the bay ecosystem. The SBWA will expand on its education program to include more activities around salt marshes. The WESP-AC evaluation can be useful to compare different salt marshes around the bay and prioritize them for restoration or protection activities. A project is proposed for the marsh in Pointe-du-Chêne to create a marsh education park. This would allow the SBWA to do marsh discovery activities with schools and the public. The Grande-Digue marsh is also the focus of a community project for educational trails in the community. A group is formed for the Grande-Digue Marsh with the Université de Moncton, the Shediac Bay Watershed and local residents to restore the sand dune and protect the salt marsh.

The next phases of this project will develop more shoreline restoration solutions for landowners to reduce erosion and increase biodiversity. A workshop on living shorelines will be presented in March 2019 to local landowners. We hope to recruit interested participants for a pilot project in Shediac Bay. The use of native plants and artificial reefs to improve shorelines will be explored further.

A restoration priority for the association will be to continue reforesting buffer zones around marshes and small streams. By helping streams and marshes regain a more naturalized state their function to improve water quality will be enhanced. The reforestation will also help biodiversity by providing habitat for birds and other animals.

The Shediac Bay Watershed Association will continue the various educational campaigns around the health of the Shediac Bay. The association will continue to increase opportunities for stewardship activities with the public such as shoreline clean-ups and tree planting activities. Partnerships with the local marinas will help promote best practices for boaters that are regular users of Shediac Bay. Other partnerships such as the beach sweep with the town of Shediac will be developed to help increase awareness around the importance of a healthy environment.

Educational materials will continue to be produced by the SBWA for all its projects. There will be an increase of the presence in social media and at local events.

The Shediac Bay Health Evaluation project has gathered a wide range of information since 2016. The project will continue to expand in the coming years with increasing partnerships. There is still more that can be done to improve our knowledge about the Shediac Bay. As the project evolves the association will concentrate on more stewardship projects to help improve the environment around Shediac Bay.

Bibliography

- Brix, K. V., Deforest, D. K., & Adams, W. J. (2001). Assessing acute and chronic copper risks to freshwater aquatic life using species sensitivity distributions for different taxonomic groups. *Environ. Toxicol. Chem.*, 20(8), 1846-1856. doi:0730-7268/01
- Canadian Council of Ministers of the Environment. (1999). Canadian water quality guidelines for the protection of aquatic life: Dissolved oxygen (freshwater). *Canadian environmental quality guidelines, 1999.* Retrieved January 2018, from http://ceqgrcqe.ccme.ca/download/en/177
- Canadian Council of Ministers of the Environment. (2003). Canadian water quality guidelines for the protection of aquatic life: Aluminum. *Canadian environmental quality guidelines*, *1999*. Retrieved January 2018, from http://www.ec.gc.ca/lcpecepa/documents/consultations/aluminium-retire-withdrawn-eng.pdf?file=.pdf
- Canadian Council of Ministers of the Environment. (2009). Canadian water quality guidelines for the protection of aquatic life: Boron. *Canadian environmental quality guidelines*, 2009. Retrieved January 2018, from http://ceqg-rcqe.ccme.ca/download/en/324
- Canadian Council of Ministers of the Environment. (2010). Canadian water quality guidelines for the protection of aquatic life: Ammonia. *Canadian environmental quality guidelines*, 1999. Retrieved January 2018, from http://ceqg-rcqe.ccme.ca/download/en/141
- Canadian Council of Ministers of the Environment. (2011). Canadian water quality guidelines for the protection of aquatic life: Chloride. *Canadian environmental quality guidelines*, 1999. Retrieved January 2018, from http://ceqg-rcqe.ccme.ca/download/en/337
- Dennis, I. F., & Clair, T. A. (2012). The distribution of dissolved aluminum in Atlantic salmon (Salmo salar) rivers of Atlantic Canada and its potential effect on aquatic populations. NRC Research Press. doi:10.1139/F2012-053
- McDonald, D. G. (1983). The effects of H+ upon the gills of freshwater fish. McMaster University, Department of Biology. Hamilton: NRC Research Press. Retrieved January 22, 2018, from http://www.nrcresearchpress.com/doi/pdf/10.1139/z83-093
- New Brunswick Department of Environment and Local Government (2018) Manual for Wetland Ecosystem Services Protocol for Atlantic Canada (WESP-AC): Tidal Wetlands
- Xing, W., & Liu, G. (2011). Iron biogeochemistry and its environmental impacts in freshwater lakes. Chinese Academy of Sciences, Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan. Retrieved January 2018, from https://pdfs.semanticscholar.org/908d/3fd96d77b118c15d927bd0b0d8e66166c382.pdf

Appendix A – WATER CHEMISTRY METHODOLOGY

RPC LABORATORY ANALYTICAL METHODS					
Analyte	Parameter	RPC SOP Number	Method Reference	Method Principle	
Ammonia	NH₃T	4.M47	APHA 4500-NH3 G	Phenate Colourimetry	
рН	pН	4.M03	APHA 4500-H+ B	pH Electrode - Electrometric	
Alkalinity (as CaCO3)	ALK_T	4.M43	EPA 310.2	Methyl Orange Colourimetry	
Chloride	CI	4.M44	APHA 4500-CL E	Ferricyanide Colourimetry	
Fluoride	F	4.M30	APHA 4500-F- D	SPADNS Colourimetry	
Sulfate	SO ₄	4.M45	APHA 4500-SO4 E	Turbidimetry	
Nitrate + Nitrite (as N)	NOX	4.M48	APHA 4500-NO3 H	Hydrazine Red., Derivitization, Colourimetry	
Nitrite (as N)	NO ₃	4.M49	APHA 4500-NO2- B	Ferrous Ammonium Sulfate Colourimetry	
Phosphorus - Total	TP-L	4.M17	APHA 4500-PE	Digestion, Manual Colourimetry	
Carbon - Dissolved Organic	TOC	4.M38	APHA 5310 C	UV-Persulfate Digestion, NDIR Detection	
Turbidity	TURB	4.M06	APHA 2130 B	Nephelometry	
Colour	CLRA	4.M55	APHA 2020 Color (A,C)	Single Wavelength Spectrophotometry	
Conductivity	COND	4.M04	APHA 2510 B	Conductivity Meter, Pt Electrode	
Trace Metals	_	4.M01/4.M29	EPA 200.8/EPA 200.7	ICP-MS/ICP-ES	

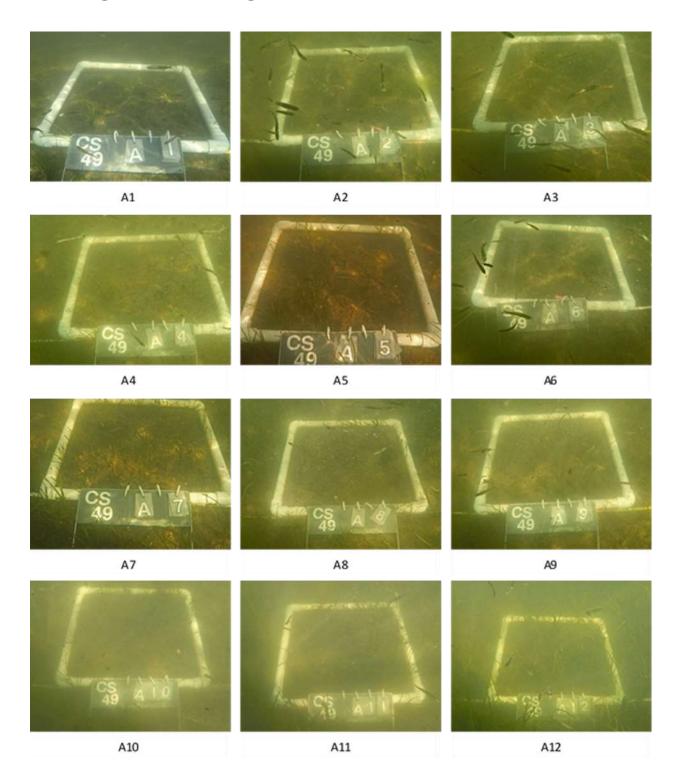
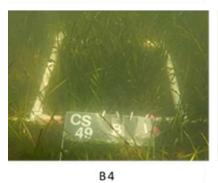
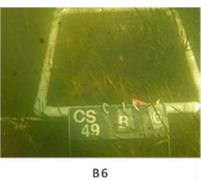

Table 46: RPC Laboratory Analytical Methods

Table 47: RPC Laboratory Analytical Methods for E. coli

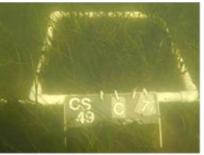
RPC LAB ANALYTICAL METHODS FOR E. COLI				
Method	ID	Max Detection Limit		
Membrane Filtration	FSA-01	10000 MPN/100 mL		
Colilert	FSA-10	2419.6 MPN/100 mL		


Appendix B: Eelgrass Monitoring Transect Photos

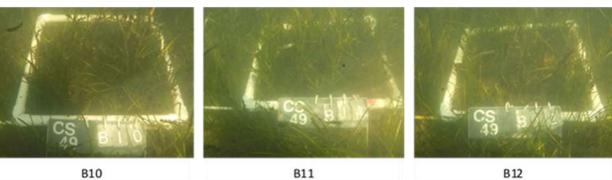
Eelgrass Monitoring Transect Photos: Stead St./South Cove

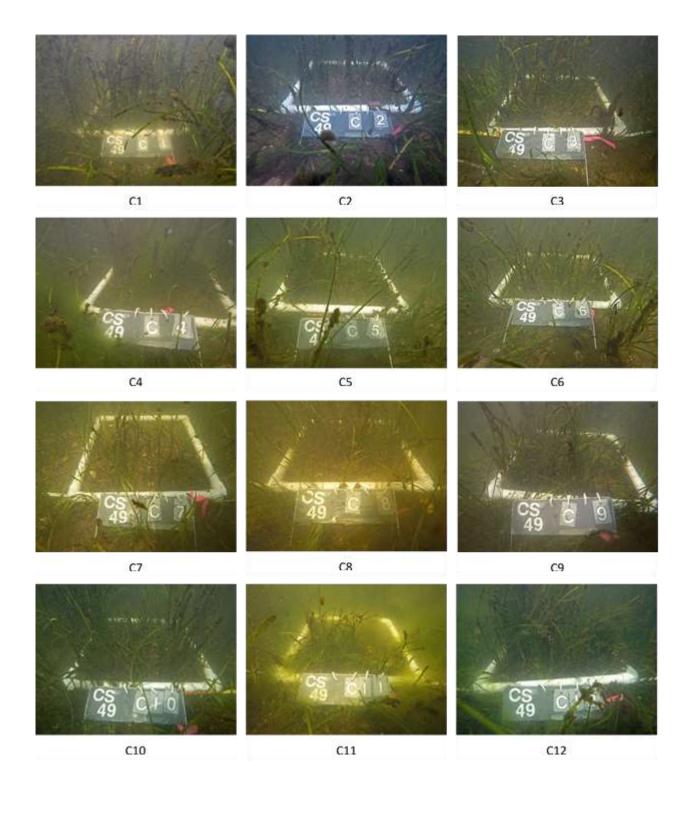


Β1

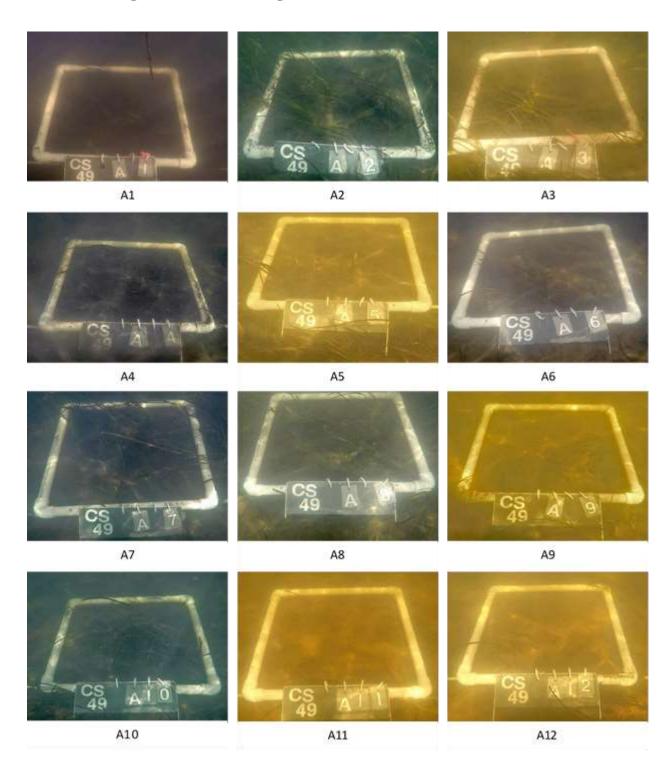


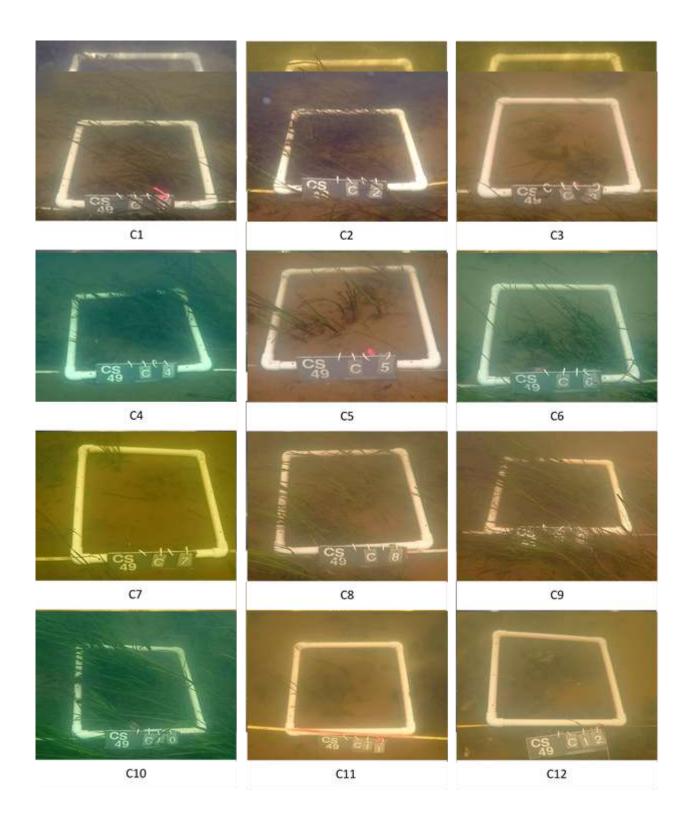
B5


Β9



Β7





Evaluation of the Health of the Shediac Bay, 2018 Final Report March 2019

Eelgrass Monitoring Transect Photos: Shediac River

Appendix C: Eelgrass Monitoring Field Sheets

Locations P + Astrand costs & no. A	Transect A		Rese	cus a	arthers	4		4	Sampling	Sampling date and time	1.	** 30 Jan 2005	· V2	1400 his
State/Country:	Station (circle carc)	1. Da	B. Möddle. C.	C. Offshare		Comments								
PARAMETERS		Famok			Cross transact: 0.25 m	oct 0.25 m				4	Inse-transe	Cross transact 26:50 m		3
Quadrat Measures a prostored makes detector	cost taskets distance	Quadrat	Quadrat	Quadrat	Quadrat	Quadrat	Quadra	Quadrat	Quadrat	Quedrat	Quadrat	Quadrat	Quadrat	Quadrat
Phasagraph (1 per quadrat)		1		-	-	1			-	-	1	-		1
Voncher Specimen (1 of coult species/station)	121	~		2.0		1				1				1
All Species Cover	Total 9	196	4	0	5	30	5 3	10	57	O'L	0.0	32	69	20
Species =Si	% Cover	01									N I Con		1	
Species =	R Cove								2012					F
Species =	% Cove										125			
Species =	% Cose		- wit	1 11 2 -	Pro 2	35. 2	C. S.C.	1 W.E	25cmt	25ria	2.5 cm	SSon	25 M	25cm
Species 31. 2.1.1 % C	% Cover Density	20.1.32	218	51	2 12	L'S	23.58	and and	25 lip	04 02 Hg	20 145	35 44	34 09	50 5
Canopy Height (cm). Genzing Evidence?	ing Evidence"	2 12	NO	R N	12 N	15 N	101	12. 4	1. 81	181	953	107	374)	4 L t
FlawerdFruit Count by species	inc.	15.9						15.					-	
Leaf Bromass Corr	Size (ar)	SERVICA &	10						-		and a state		1	
		A hearthore 6. Middle	13 mm	ed Rasdom	Pre-veleped Rusdom Stances for 3-25m 2 9 19 10 11	n 9-25a	2 23	202	Pre-selec 26 23	Pre-selected Random Distances for 26-50m 28 11 15 14 28 11 15 24	Distances fo 35 35	or 26-50m 40 37	381	_\$\$3
Mons		anucin -	Int	1	10	9	152	13 mil	66	4	Right 150		and a	
GPS: Latitude Dist. to edge (ct)	o edge	88				P			15				a straight	
Longitude Dist to last	o last	EH	Copper			15				1		Hermin	N.C.	1
Witter Depth (m) at time (hrs)		218-00-1324	EX.D	NO. W	10:55	V	0.9Victory	HA NO	1 keyer		る金田子	10 at	大ち	,t
Surface sediment observation / sumple Incenant / yes	on / sumple mea	ADD 1 YES												
Station Measures					Region	Region IV species								
Light - Hobo (day in - day out)	8	ath + Milan			Rd - Halap	114 - Haiaphila dospiera		Bor Mainhale urights		the - Unknown		-		
Water temp. logger (day out)	sut)	stim	Be-130	30	Re - Halopi	He - Halophile reprisoned	1.1	Res - Ruppie autilies	1	-	-			T
Salinery (ppc)		151	CALLE	35	Angelands - 18abanda	inerador publicada - 10	1	Sf - Nettigedian (liferes	forme				1 million	
Tadd Chun Duch or low / surme or nemt In	In Conver on survey	the stations			att Madamilia Anthropic	the Antiferent	11 11	The Western manufacture	Marcan -					

Eelgrass Monitoring Field Sheets: Stead St./South Cove

SeagraceNet Field Sumpling Form (one sheet	g Form (one shi	cet per station)	•	neets a shan		Seagrassivel - Scagrass mumming in the	ST. FORMATIC	Hantr 9		Cardina and Cardina		21 S. W. WINS	in the second	1.400
Locator Theod	Transect code & no.i		Researchers	Nets					Sumpling	Sumpling date upd unter	-	20018	10	d
StateX oranty	Station (circle one): A. Nearshore		B. Middle. C	C. Offshore		Comments						-		
PARAMETERS	ERS	Example			Cross transect. 0:25 m	ct 0.25 m			,	9	TONS-ITADSC	Cross transed 25-30 m	-	
Quadrat Measures age electronization defined	scool makers definition	8	d Quadrat	Ortadrat	Quadrat	Quadran (Quadran	Quadrat	Quadrat	Quadrat	Quadrat	Quadrat	Quadrat	Quadrat
Photograph (1 per quadrat)		1					N		1					
Vowcher Specimen (1 of cach species/Station)	ach	*	1	1	>	1	5	1	>	5	>	1	7	3
All Species	Texal 9	10	50	10	00/	105	50	Ç	105	15	20	105	00	35
Species =51	4 Cover	107 200				I	4							
Species =	G Cover	2000		1		120								
Species #	% Cover	wei					1		K		1			
Species =	% Coser	wei	D. and	05 m	2.Sturk	BSC.	25Lm	25/22	Stewart -	SSC	たいいで	25 cm	12Stra	12
Species -# 2.vv	% Cover Density	thy 20 1 12	8	S locality	PT 49	104,59	SU 134	HC FM	(H) 54)	5154 0	2036	Hr. 591	800. 8	Se.
Campy Height (cm). Gazzing Evidence ⁷ (yin)	mig Evidence	A 07	52	N Sti	State	32.7	20 N	367	、な	354	33 4	A th	454	ASE
Flower/Fruit Count by species				7					-		-			_
Leaf Beomass Core	Size (m ²	(m) v 0.003	-							- Second		and the second		_
			Pre-se	Pre-selected Sandom Distances for 0-25m	A SAMERA I	or 0-25m		No. of the local division of the local divis	Pre-solo	Pre-sciected Random Distances		m04-97 .WI		
		A. Newshore B. Middle C. Offshore	~=== 8 =	~ 2 ~	*19	#53	82 SI	***	***	273	5 .63.53	9 M M	5 R.4	
Cross-transed Measures			Laft				Center d	100		-		(Mar		+
GPS-Latitude Das.	Dist. to edge	-	4.8					3						-
Longaude Des.	Disk, to last		711	1					-	-	-		- 2	-
Water Depth (m) at time (his)		1336 1334	C	0000	10.01		5	TYP.	NO1 #	20	4	lolo1	-	1
Surface sediment observation / sunple		Inc-and / yes			- 10						1			
Station Measures		1			Region	Region IV species		and the second se	t	Contraction of the second s				
Loght Hobs (day in - day out)	day out)	Sho - Sthe		4	ISS - Baloy	Bit - Balophila decision		Hw - Halodinie wrighun		La - Unicown	5			
Water temp, logger (day out)	y (300)	MUDA	HR.	14	Ne - Main	He - Multiplicite engolmenter	in the	Ren - Reguin marilled	200					
Salundy (ppt)		25.8	2/61	The	HI - Haby	B1 - Mahaphilin Johnnen		SR - Strangaolium filipurus	lijerne Marine					
Total Cases (heads are low / anribut or nearly low spills	Currings or brain	A tow spears			Harvey and the solution of the solution of the	diffe Part Postsir		WHICH THE TOTAL TOTAL	- MAAOO			-		

7/Steed	Trassect code & no.: (Rese	thers:	archers.			0	Samplin	Sampling dute and time	25	11 2005 14	1 N	1400 hs
State/Country:	Station (circle one): A. Neardore	1.10	B. Middle C	C. Offshore	0	Comments	c wild	d outer	CI Deduh	5	12 1	9		
PARAMETERS	KS	Example			Cross-truts		1				Cross-traosset 26-50 m	x1 26-50 a	V. Sol	1
Quadrat Measures againstantin drama	ted surface distances	Quadrat	Quadrat	Quadrat	Quadrat	Quadrat	Quadrat	Quadrat	Quadrat	Quadrat	Quadra	Quadrat	Quadrat	Quadrat
Photograph () per quadrat)		1	1	1	1	1	1				1			
Voucher Specimen (1 of each species/Station)	15	2	>	>	1	>	1	1	5	>	1	1	2	
All Species Cover	Total %	69	20	20	52	25	25	30	20	53	Sol	X	V	1743
Species =5i	% Cover	10 40									-	2		
Species =	% Cover	cu												
Species =	% Cover	an an			-									
Species =	% Cover	ata,	a su	4	1760 val	4 VG	255	2.000	Cervo.	S. S. S.	100 2	active a	Serie	-00
Species =T) % (a.1	% Cover Density	1 20 1 12	20/15	30 00	SH1ST	118		2015	PL 02	58 22	199		15 18	120
Campy Hergin (cm). Grazing Evidence? (yin)	ng Evidence?	20 N	105	33.7	SS N	464	85 N	33.4	K LT	K ts	-	3540	1 92	
Flower Fruit Count by enclose	96	15.9								-	1			
Leaf Boonass Core	Size (m)	STORN V RUDINS								Citra C				1
			Pre-selec	tred &andom	Pre-selected Random Distances for	r 0-25m	A		Pre-selec	led Random	Pre-selected Random Distances for	of 26-50m		F
		A. Nearthare B. Middle C. Offshore	1	N95	8 2 9	858	228	222	***	823	***	923	48 88 88	883
CPS Latitude Dist to educ	edec *	+ 8.5	Left . fini				4	(2 Ami			Right the	10.0		
ų	list	EH				-				-			2	
Water Depths (m) at time (hrs)		2.15 di 1524	51-10	R CJ	11 -30		ON LOZ	1	05:11	0	010	10	13	-
NUMBER OF STREET					and a second	-11 W. (1)-					1			
tintion Measures Light Hoto (duy in - duy out)		6ka - Jüha			Region Hd - Hulord	Region IV species IId - Hulochila incipient		IIw - Didadah wejeku		Un - Unknown				
Water temp, logger (day out)	(0)	90Jan			He - Helaph	He - Helophile engelneeun	1.5	Ran - Kuppin maritikun	1			-		
Salinity (ppt)		358			HI - Hundred	III - Mainplain, Judgesuil	81 - 510	ST - Springerdiane (Udiverse	fortest					
Tidal Stage (high or low / spring or neap) for spring	FIRE OF READ!	Statistic and			HI - Motorwine builton?	The building	11-25	Tt - Thelevile Terreforum	Avan a		1			

Location Chied and Anne A	-	Researchers	here					Sumpley	Sumpling date and time	-0	Dr21 8	-	ACKI INS
date Country Station (circle land)	- (ai)	B. Malda, C	C. Officiere		Comments		0-2	Q	P	1	2	9,2	10
PARAMETERS	Turk			Cree-transet 0.22 m	ot 0.23 m					Prose-truns	Cross-transcel 26-50 m	100	
Quadrat Measures a provinced radia Advance	Quadrat	Quadrat	Quadrati	Quadrat	Quadrat	Quadrat	Quadrat	Quadrat	Quadrat	Condra	Quadrat	Quadrat	Quadrat
Photograph (1 per quadral)	-	1	-		/	-			-	1	1	1	1
Voucher Specimen (1 of each secres/station)	×	2	1	>	5	R	5	1	>	1	1	>	1
All Species Total 9. Once	10	S	5	20	a	0	1	12	3	1	10	550	-
Species = St % Cover	- 10												
Species = ** Cover						1		-	-			1	
Species = #: Cover						-			11	17.1			「
Species = 9, Cover		VAN ²	-twit	25.2	Train	lang.	then R.	in we	Ima	Tim 2.	Line 2	1465.2	frand?
ptotes - 1 2 von % Cover i Denety	20.1.12	5112	1 10	-	12 12	5 5	211	15 31	N	the let	10 14	1250	-V
Cinopy Height (cin) Grazing Evidence" (yin)	1 01	89 Y	30.7	35 N	1.1	Kah	R. 6 4	00	48.1	234	154	30.4	373
Hower/Frait Count hy coccess	124												
Leaf Burmos Core Size (m ³	V DOUTS					1			-	13		-	
1	A. Nearthorn B. Middle C. Offsbore		Sed Report	Pre-selected Random Distances for 10-25m 2 7 8 10 10 15 10 5 7 10 10 10 10	ar 15-25m 16 17 18	832	****	Pre-whi 16 28 28 28	Pre-selected Readom Distances for 25-5001 28 21 25 21 25 28 26 31 25 35 31 25 31 25 31 25	Distances 2 38 35 35	100-50 H	य से प	\$93
Cross-transect Measures CPS Latinde Dist to edge	-	Left Mus		-		Centrel	(1944)	1		Right da	(Hue	-	
Longitude Dist to had (m)	THE .	20	31100 0	04 9:25	5			1				1	
Water Depth (m) at trace threa	e IX	素切	7 61	やーち	10.14	1-22	12	# 10.	22	1.00	ALCO M	10. 2	15
Surface solunem observation / sumple fue a	「大い」		1					1	1				
Station Measures				Region	Region IV species	11	1.0000000000000000000000000000000000000	11	ALCOLUMN T				
Lagal - thate (the mean out)	1044-5 - W		-	diana tata	and the monthly with the		NUCLEN STRONG - MID		LB + LBXEOWD		-		
Water temp, logger (day out)	20100	C. 10	5	Hu - Mridd	He - Molegilia engelmanor		Rue - Joippas margines	2			1	Y	
Salitatiy (ppt)	10	Pie SH	1	Hit-Paline	Dimension in the second s		SE - Springentium Alforme	(littler			1		

Eelgrass Monitoring Field Sheets: Shediac River

SemproxNet Field Sampling Form (one sheet per station)	ng Form (one short]	wer station		agrassi	ver = >e	SeagrassNet = Seagrass Monitoring Network	OBMOL	ug iverw	OTK .			TAX CALINGTON DAGEN	Indexes minor	15
Location Local R	Transect orde & no : R		Researchers	SID					Sampling	Sampling date and tone	-11	10 - 31	0.19	ANT INA
State/Country:	Station (circle one):		1	the state of the	P	Comments:	10		10.00	5				
	A. Noushare,		B. Middle, C.	C, Offshore	and the second	The second second		-				100 100		
PARAMETERS		Larspic			Crost-trans	Cross-transact 0-25 m			2.		NORT-PROF	Cross-transect 26-201 m		11
Quedrat Measures a production data and	development distance	Questrat	Quadrat	Quadrat	Quadrat	Quadrat	Oundrat	Quadrat	Quadrat	Quadrat	Quadrat	Quadrat	Quadrat	Quadrat
Photograph (I per quadrat)	10	1						1	1		1	1		
Voucher Specimen (1 of cach societ/Station)	cach	~	1	1	7	1	1	/	>		>	1		
All Species	Total %	99	S	5	0,5	5	4	5	2.510	0	5	0	0	-
Species =Si	S Cover	40												-
Species =	G. Cover									Ł	1	1	2	-
Species =	S Cover										Í	(is	1	
Species =	S. Cover		1112	e WA	l'ma a	Innet	112	1 mg	0.04	eval	- Aves	1 mg	- Cont	Im
Speries 47 2. Man	"a Cover Density	27 27	513	5 16	1.20	5 4	7 10	5 14	01513	0 0	5	-0	L C	-
Campy Height (cm). Grazing Evidence?	naring Evidence?	5 R	K-CH	334	FRE	128	K-SA	Dey	10PC	20	TG	N-SX	N 9.0	5910
- Charles		WF								- 218		-		
Flower/Fruit Court by species	pectes Size (m ¹	A DJBAN												1
The second second second second	-		Bre-celo	Tred Randon	Pre-uniected Random Distances for 0-25m	fair 0-25m			Pre-sele	Ced Randon	Pre-selected Random Distances	for 26-50m		
		A. Nearshore B. Miscle	-	r 01		97	81	10.100	222¥	11 II II	***	82.8	\$ 5 9	844
Crossfrancet Measures		C Officient	[AB		01			194				(Hau)		-
GPS: Lutitude Dist	Dist. to edge	48								-				
Langaude Dis	Dist to las	EUL								_				4
Water Depth (m) at time (hrs)	the (hus) 12 to the	# 1524	1-shirt	HE LUN	10 5	9	1.1	The	at 11:th	Dia	1-0 -V	- CA	m 114 2	2
Surface sediments observation / sample / me sur	varion / sumple times	and y yes									_			
Station Measures					Regist	Region IV species		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ī	The Alfahamatic		-		
Light Hobo (day in - day out)		films - 30Jan	-		Hd - Wah	H4 - Mainplato decimina		Nu - Maturation - N				1		
Water temp, logger (day out)	ay out)	Man	-		He - Hal	He - Halonkila cogeliumai		Ron - Kappia maricona			1	-		
Salunicy (ppt)		12.8			overy + fast	HI - Habititi publication		53 - Stringoulian Subarm	diame					
A set of the set of th		line orthe			1 111 - Mala	MR1 - Mashenderfor Australianty	1 - M	Martine Martine M	- Witting					

Lacebook R. Transect	Transect code & no.:	c \	Resci	hers	echers Sam				Sumpling	Sampling date and time	12/	30 Jan 2005	2018 1:10	Sold (XDE)
State/Country-	Station (circle one): A. Nearshore,		B. Middle.	C. Offshore	5	Comments	4			6				
PARAMETERS	ERS	Stank			Cruss-trans	Trust-Runset 0-25.m	1	-	1		TONS-ITARN	Cross-franket 26-50 m	10	100
Quadrat Measures aparetasi taken datasa	enselve delaste	Quidra	Quadrat	Quadrat	Quadrat	Quadrat	Quidrat	Quidrat	Quadrat	Quadrat	Quadrat	Quadrat	Quadrat	Quadrat
Photograph (1 per quadrat)		1				1			-	1				
Voucher Specimen (1 of each species/Station)	ach	1	3	V	1		1	X	17	-		the second		
All Species Cover	Total S	8	10	20	-	1	00	6	0.5	151	25	30	10	0
Spores =5i	& Cover	40									5 U. 2			
Species =	9 Cover													
Species =	4 Cover			1		1			-		111			1
Spectes =	9. Cover		(inale)	(-11-2)	(Inster)	Churles 1	(marile)	(tente)	Tuxin.	(male)	Clarkin	CEENER	(crew)	
Species = 0 95	% Cover Density	201.32	10123	20 39	1 6	空き	E1 8	5 40	0.512	15 124	Lovas By	10.0	5 13	010
Canopy Height (cm) Grazing Evidence? (y/n)	ung Evidence?	21 Y	557	52.4	34 4	53 Y	424	家义	32 /	Calo Y	654	WEL	34 1	M
Hower/Fruit Count by species		11	-											1
Leaf Biomass Corr	Size (m ²)	V GARAN	-		The second						1			
			Pre-sele	ned Andorn	Pre-selected Random Distances for 5-25m	ar 6-25m			Pre-selec	ted Randon	Pre-selected Random Distances for 26-50m	for 26-50m		F
	440	A. Nearshorn E. Middle C. Offshore	~ ~ ~	-8-	•28	909	829	xxa	***	naz	##22	853	389	843
Meas			Left day			100	2	(2) tau	-		Bigthi 15	lau .		1
CPS: Lahtode Dist. 1/	Dist. to edge (m)	- 80												
Longstude Dist to last	t to last	TH.			-								1	
Water Depth (m) at time (has)		1524	the second	R			1.5	50 × 1	u 2pm			TR.		
Surface solument observation / sumple	ton / sumple fue-simil	47.74			-				-	1		100		
Station Measures					Region	Region IV species							1	
Light Hobo (day in - day out)		films - Solut	-		Hd - Helop	IId - /istophila derpant		Hu - Reladuic whyhil		t's - Unkeowa		-		3
Water temp, logger (day out)	()00()	nilot		ales a	He - Hubby	He - Hokedikı şayelmanat	1	Rm - Augus mariting		1			1	
Salinity (ppt)		13,55	134	1	Atpolait - 184	184 - Plefughhle julinauen	T	SI - Syrugodian filipotae	Bothier	1	3			110
Tidal Stage (high or low / spring or neap)	wrine or nearly low april	1,1,1,5,0,1			HI - Helunhile hutburit	alle Nutlikini	14 · M	The Photomic Introductor	Water .					

Annex 1 - Manual for Wetland Ecosystem Services Protocol for Atlantic Canada (WESP-AC): Tidal Wetlands

1

Manual for Wetland Ecosystem Services Protocol for Atlantic Canada (WESP-AC): Tidal Wetlands

New Brunswick Department of Environment and Local Government Fredericton, New Brunswick April 2018